HIV-1 TAT (48-60)
Need Assistance?
  • US & Canada:
    +
  • UK: +

HIV-1 TAT (48-60)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

HIV-1 TAT (48-60) is a cell-penetrating peptide generated from the human immunodeficient virus (HIV)-1 Tat protein residue 48-60. It has been used to deliver exogenous macromolecules into cells in a non-disruptive way.

Category
Functional Peptides
Catalog number
BAT-013278
Molecular Formula
C70H131N35O16
Molecular Weight
1719.04
IUPAC Name
(2S)-5-amino-2-[[(2S)-1-[(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-6-amino-2-[[(2S)-2-[(2-aminoacetyl)amino]-5-(diaminomethylideneamino)pentanoyl]amino]hexanoyl]amino]hexanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]amino]-5-oxopentanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]pyrrolidine-2-carbonyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoic acid
Synonyms
H-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-Pro-Pro-Gln-OH; glycyl-L-arginyl-L-lysyl-L-lysyl-L-arginyl-L-arginyl-L-glutaminyl-L-arginyl-L-arginyl-L-arginyl-L-prolyl-L-prolyl-L-glutamine
Appearance
Lyophilized Powder
Purity
≥95%
Density
1.6±0.1 g/cm3
Sequence
GRKKRRQRRRPPQ
Storage
Store at -20°C
Solubility
Soluble in Water
InChI
InChI=1S/C70H131N35O16/c71-27-3-1-13-39(95-53(109)38(94-52(108)37-73)15-5-29-88-65(76)77)54(110)96-40(14-2-4-28-72)55(111)97-41(16-6-30-89-66(78)79)56(112)98-43(18-8-32-91-68(82)83)58(114)101-45(23-25-50(74)106)60(116)100-42(17-7-31-90-67(80)81)57(113)99-44(19-9-33-92-69(84)85)59(115)102-46(20-10-34-93-70(86)87)62(118)105-36-12-22-49(105)63(119)104-35-11-21-48(104)61(117)103-47(64(120)121)24-26-51(75)107/h38-49H,1-37,71-73H2,(H2,74,106)(H2,75,107)(H,94,108)(H,95,109)(H,96,110)(H,97,111)(H,98,112)(H,99,113)(H,100,116)(H,101,114)(H,102,115)(H,103,117)(H,120,121)(H4,76,77,88)(H4,78,79,89)(H4,80,81,90)(H4,82,83,91)(H4,84,85,92)(H4,86,87,93)/t38-,39-,40-,41-,42-,43-,44-,45-,46-,47-,48-,49-/m0/s1
InChI Key
RAIPPQLNSCSOOW-XNHKUAGSSA-N
Canonical SMILES
C1CC(N(C1)C(=O)C2CCCN2C(=O)C(CCCN=C(N)N)NC(=O)C(CCCN=C(N)N)NC(=O)C(CCCN=C(N)N)NC(=O)C(CCC(=O)N)NC(=O)C(CCCN=C(N)N)NC(=O)C(CCCN=C(N)N)NC(=O)C(CCCCN)NC(=O)C(CCCCN)NC(=O)C(CCCN=C(N)N)NC(=O)CN)C(=O)NC(CCC(=O)N)C(=O)O
1. Enhanced cellular uptake with a cobaltacarborane-porphyrin-HIV-1 Tat 48-60 conjugate
Martha Sibrian-Vazquez, Erhong Hao, Timothy J Jensen, M Graça H Vicente Bioconjug Chem. 2006 Jul-Aug;17(4):928-34. doi: 10.1021/bc060047v.
A series of four porphyrin-cobaltacarborane conjugates have been synthesized, containing three or four cobaltabisdicarbollide anions linked by O(CH(2)CH(2)O)(2) groups to the porphyrin macrocycle and one of them containing a HIV-1 Tat 48-60 peptide sequence linked via a low molecular weight poly(ethylene glycol) (PEG) spacer. The cellular uptake, cytotoxicity, and preferential sites of intracellular localization of the conjugates were evaluated in human HEp2 cells. All conjugates are nontoxic in the dark at the concentrations studied. Upon exposure to low light dose (1 J cm(-)(2)) only the porphyrin-cobaltacarborane-HIV-1 Tat 48-60 conjugate showed 30% inhibition of cell proliferation at a concentration of 10 microM. The cellular uptake was dependent on the number of carborane cages and was significantly enhanced by the presence of the cell penetrating peptide sequence HIV-1 Tat 48-60. All conjugates preferentially localized in the cell lysosomes.
2. HIV-1 Tat-peptide inhibits protein kinase C and protein kinase A through substrate competition
Elina Ekokoski, Olli Aitio, Kid Törnquist, Jari Yli-Kauhaluoma, Raimo K Tuominen Eur J Pharm Sci. 2010 Aug 11;40(5):404-11. doi: 10.1016/j.ejps.2010.04.013. Epub 2010 Apr 28.
HIV-1 Tat-peptide is widely used as a vector for cargo delivery into intact cells. As a cationic, arginine-rich peptide it can readily penetrate the plasma membrane and facilitate the penetration of impermeable bioactive molecules such as proteins, peptides, nucleic acids and drugs. Although at first considered as an inert vector, recent studies have however shown that it might have effects on its own on various cellular processes. In the present study we have investigated the effects of the Tat-peptide(48-60) on two basic serine/threonine kinases, protein kinase C and A, since earlier studies have shown that certain arginine-rich peptides or proteins might have a modulatory effect on their activity. In in vitro studies, Tat-peptide inhibited PKC alpha in a concentration-dependent manner with an IC(50)-value of 22nM and PKA with an IC(50)-value of 1.2 microM. The mode of inhibition was studied in the presence of increasing concentrations of a substrate peptide or ATP. Tat-peptide competed with the kinase substrates, however it did not compete with ATP. In a panel of 70 kinases Tat-peptide showed inhibitory activity at least towards other AGC-family kinases (PKB, SGK1, S6K1, MSK1), CAMK-family kinases (CAMK1 and MELK) and a STE family kinase (MKK1). In HeLa cells Tat-peptide inhibited the phorbol ester-evoked ERK1/2 phosphorylation suggesting that Tat inhibited PKC also in intact cells. In thyroid cells Tat-peptide attenuated sphingosylphosphorylcholine-evoked Ca(2+)-fluxes, which have earlier been shown to be dependent on PKC. Taken together, these results indicate that the Tat-peptide(48-60) is a potent inhibitor which binds to the substrate binding site of the basophilic kinase domain.
3. Selective side-chain modification of cysteine and arginine residues blocks pathogenic activity of HIV-1-Tat functional peptides
Krishnakumar Devadas, et al. Peptides. 2006 Apr;27(4):611-21. doi: 10.1016/j.peptides.2005.09.013. Epub 2005 Oct 26.
Extracellular Tat protein of HIV-1 activates virus replication in HIV-infected cells and induces a variety of host factors in the uninfected cells, some of which play a critical role in the progression of HIV infection. The cysteine-rich and arginine-rich basic domains represent key components of the HIV-Tat protein for pathogenic effects of the full-length Tat protein and, therefore, could be ideal candidates for the development of a therapeutic AIDS vaccine. The present study describes selective modifications of the side-chain functional groups of cysteine and arginine amino acids of these HIV-Tat peptides to minimize the pathogenic effects of these peptides while maintaining natural peptide linkages. Modification of cysteine by introducing either a methyl or t-butyl group in the free sulfhydryl group and replacing the guanidine group with a urea linkage in the side chain of arginine in the cysteine-rich and arginine-rich Tat peptide sequences completely blocked the ability of these peptides to induce HIV replication, chemokine receptor CCR-5 expression, and NF-kappaB activity in monocytes. Such modifications also inhibited angiogenesis and migration of Kaposi's sarcoma cells normally induced by Tat peptides. Such chemical modifications of the cysteine-rich and arginine-rich peptides did not affect their reactivity with antibodies against the full-length Tat protein. With an estimated 40 million HIV-positive individuals worldwide and approximately 4 million new infections emerging every year, a synthetic subunit HIV-Tat vaccine comprised of functionally inactive Tat domains could provide a safe, effective, and economical therapeutic vaccine to reduce the progression of HIV disease.
Online Inquiry
Verification code
Inquiry Basket