Conantokin-R
Need Assistance?
  • US & Canada:
    +
  • UK: +

Conantokin-R

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Conantokin-R is a potent and non-competitive NMDA receptor antagonist with IC50 value of 93 nM. It also has NR2 subunit selectivity. It inhibits inward currents evoked by NMDA in central nervous system neurons. It shows broad antiparkinsonian and anticonvulsant activity in vivo.

Category
Peptide Inhibitors
Catalog number
BAT-010230
CAS number
202925-60-8
Molecular Formula
C127H201N35O49S3
Molecular Weight
3098.4
Conantokin-R
IUPAC Name
2-[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[(2-aminoacetyl)amino]-4-carboxybutanoyl]amino]-4,4-dicarboxybutanoyl]amino]-4,4-dicarboxybutanoyl]amino]-3-methylbutanoyl]amino]propanoyl]amino]hexanoyl]amino]-4-methylsulfanylbutanoyl]amino]propanoyl]amino]propanoyl]amino]-3-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-4-amino-1-[[(2S,3S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[2-[[(4R,7S,10S,13S,16R)-13-(4-aminobutyl)-7-(2-amino-2-oxoethyl)-4-[[(2S)-1-[(2S)-2-carboxypyrrolidin-1-yl]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]carbamoyl]-6,9,12,15-tetraoxo-10-propan-2-yl-1,2-dithia-5,8,11,14-tetrazacycloheptadec-16-yl]amino]-2-oxoethyl]amino]-1-oxohexan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-4,4-dicarboxy-1-oxobutan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-oxopropyl]propanedioic acid
Synonyms
Conantokin R; 202925-60-8; conantokin-RAKOS024457444; CID 90488802
Appearance
White Lyophilized Solid
Purity
>98%
Density
1.6±0.1 g/cm3
Sequence
GEXXVAKMAAXLARXNIAKGCKVNCYP
Storage
Store at -20°C
Solubility
Soluble in DMSO
InChI
InChI=1S/C127H201N35O49S3/c1-15-57(8)93(116(192)142-62(13)96(172)145-69(24-16-19-36-128)99(175)137-51-89(167)144-83-52-213-214-53-84(113(189)157-82(43-63-29-31-64(163)32-30-63)117(193)162-40-23-28-85(162)126(210)211)158-109(185)80(48-86(132)164)156-115(191)92(56(6)7)159-104(180)71(148-112(83)188)26-18-21-38-130)161-111(187)81(49-87(133)165)155-108(184)78(46-67(122(202)203)123(204)205)152-102(178)72(27-22-39-136-127(134)135)147-95(171)60(11)140-105(181)75(42-54(2)3)151-106(182)76(44-65(118(194)195)119(196)197)150-98(174)59(10)138-94(170)58(9)139-100(176)74(35-41-212-14)149-101(177)70(25-17-20-37-129)146-97(173)61(12)141-114(190)91(55(4)5)160-110(186)79(47-68(124(206)207)125(208)209)154-107(183)77(45-66(120(198)199)121(200)201)153-103(179)73(33-34-90(168)169)143-88(166)50-131/h29-32,54-62,65-85,91-93,163H,15-28,33-53,128-131H2,1-14H3,(H2,132,164)(H2,133,165)(H,137,175)(H,138,170)(H,139,176)(H,140,181)(H,141,190)(H,142,192)(H,143,166)(H,144,167)(H,145,172)(H,146,173)(H,147,171)(H,148,188)(H,149,177)(H,150,174)(H,151,182)(H,152,178)(H,153,179)(H,154,183)(H,155,184)(H,156,191)(H,157,189)(H,158,185)(H,159,180)(H,160,186)(H,161,187)(H,168,169)(H,194,195)(H,196,197)(H,198,199)(H,200,201)(H,202,203)(H,204,205)(H,206,207)(H,208,209)(H,210,211)(H4,134,135,136)/t57-,58-,59-,60-,61-,62-,69-,70-,71-,72-,73-,74-,75-,76-,77-,78-,79-,80-,81-,82-,83-,84-,85-,91-,92-,93-/m0/s1
InChI Key
MJQQZSPLVNQFRB-HHXUSTKESA-N
Canonical SMILES
CCC(C)C(C(=O)NC(C)C(=O)NC(CCCCN)C(=O)NCC(=O)NC1CSSCC(NC(=O)C(NC(=O)C(NC(=O)C(NC1=O)CCCCN)C(C)C)CC(=O)N)C(=O)NC(CC2=CC=C(C=C2)O)C(=O)N3CCCC3C(=O)O)NC(=O)C(CC(=O)N)NC(=O)C(CC(C(=O)O)C(=O)O)NC(=O)C(CCCNC(=N)N)NC(=O)C(C)NC(=O)C(CC(C)C)NC(=O)C(CC(C(=O)O)C(=O)O)NC(=O)C(C)NC(=O)C(C)NC(=O)C(CCSC)NC(=O)C(CCCCN)NC(=O)C(C)NC(=O)C(C(C)C)NC(=O)C(CC(C(=O)O)C(=O)O)NC(=O)C(CC(C(=O)O)C(=O)O)NC(=O)C(CCC(=O)O)NC(=O)CN
1. The amino acid residue at sequence position 5 in the conantokin peptides partially governs subunit-selective antagonism of recombinant N-methyl-D-aspartate receptors
Z Galdzicki,R C Klein,M Prorok,F J Castellino J Biol Chem . 2001 Jul 20;276(29):26860-7. doi: 10.1074/jbc.M102428200.
Whole cell voltage clamp recordings were performed to assess the ability of conantokin-G (con-G), conantokin-T (con-T), and a 17-residue truncated form of conantokin-R (con-R[1-17]) to inhibit N-methyl-d-aspartate (NMDA)-evoked currents in human embryonic kidney 293 cells transiently expressing various combinations of NR1a, NR1b, NR2A, and NR2B receptor subunits. Con-T and con-R[1-17] attenuated ion currents in cells expressing NR1a/NR2A or NR1a/NR2B. Con-G did not affect NMDA-evoked ionic currents in cells expressing NR1a/NR2A, but it showed inhibitory activity in cells expressing NR1a/NR2B receptors and the triheteromeric combination of NR1a/NR2A/NR2B. An Ala-rich con-G analog, con-G[Q6G/gamma7K/N8A/gamma10A/gamma14A/K15A/S16A/N17A] (Ala/con-G, where gamma is Gla), in which all nonessential amino acids were altered to Ala residues, manifested subunit specificity similar to that of con-G, suggesting that the replaced residues are not responsible for selectivity in the con-G framework. A sarcosine-containing con-T truncation analog, con-T[1-9/G1Src/Q6G], inhibited currents in NR1a/NR2A and NR1a/NR2B receptors, eliminating residues 10-21 as mediators of the broad subunit selectivity of con-T. In contrast to the null effects of con-G and Ala/con-G at a NR1a/NR2A-containing receptor, some inhibition ( approximately 40%) of NMDA-evoked currents was effected by these peptides in cells expressing NR1b/NR2A. This finding suggests that the presence of exon 5 in NR1b plays a role in the activity of the conantokins. Analysis of various conantokin analogs demonstrated that Leu(5) of con-G is an important determinant of conantokin selectivity. Taken as a whole, these results suggest that the important molecular determinants on conantokins responsible for NMDA receptor activity and specificity are discretely housed in specific residues of these peptides, thus allowing molecular manipulation of the NMDA receptor inhibitory properties of the conantokins.
2. Subtype-selective antagonism of N-methyl-D-aspartate receptor ion channels by synthetic conantokin peptides
Zhenyu Sheng,Mary Prorok,Francis J Castellino,Qiuyun Dai Neuropharmacology . 2007 Jul;53(1):145-56. doi: 10.1016/j.neuropharm.2007.04.016.
Conantokin-G (con-G), conantokin-T (con-T), a truncated conantokin-R (con-R[1-17]), that functions the same as wild-type con-R, and variant sequences of con-T, were chemically synthesized and employed to investigate their selectivities as antagonists of glutamate/glycine-evoked ion currents in human embryonic kidney-293 cells expressing various combinations of NMDA receptor (NMDAR) subunits (NR), viz., NR1a/2A, NR1a/2B, NR1b/2A and NR1b/2B. Con-G did not substantially affect ion flow into NR1a,b/NR2A-transfected cells, but potently inhibited cells expressing NR1a,b/NR2B, showing high NR2B selectivity. Con-T and con-R served as non-selective antagonists of all of four NMDAR subunit combinations. C-terminal truncation variants of the 21-residue con-T were synthesized and examined in this regard. While NMDAR ion channel antagonist activity, and the ability to adopt the Ca(2+)-induced alpha-helical conformation, diminished as a function of shortening the COOH-terminus of con-T, NMDAR subtype selectivity was enhanced in the con-T[1-11], con-T[1-9], and con-T[1-8] variants toward NR2A, NR1b, and NR1b/2A, respectively. Receptor subtype selectivity was also obtained with Met-8 sequence variants of con-T. Con-T[M8A] and con-T[M8Q] displayed selectivity with NR2B-containing subunits, while con-T[M8E] showed enhanced activity toward NR1b-containing NMDAR subtypes. Of those studied, the most highly selective variant was con-T[M8I], which showed maximal NMDAR ion channel antagonism activity toward the NR1a/2A subtype. These studies demonstrate that it is possible to engineer NMDAR subtype antagonist specificity into con-T. Since the subunit composition of the NMDAR varies temporally and spatially in developing brain and in various disease states, conantokins with high subtype selectivities are potentially valuable drugs that may be used at specific stages of disease and in selected regions of the brain.
3. Conantokins: peptide antagonists of NMDA receptors
John D Wagstaff,H Steve White,Richard T Layer Curr Med Chem . 2004 Dec;11(23):3073-84. doi: 10.2174/0929867043363901.
Conantokins are small peptides (17-27 amino acids) found in the venoms of cone snails (Conus sp.) that inhibit the activity of N-methyl-D-aspartate (NMDA) receptors. Unlike most of the peptides characterized from cone snail venom that contain multiple disulfide bridges, conantokins are linear peptides that possess a high degree of alpha-helicity in the presence of divalent cations, and contain gamma-carboxyglutamic acid residues. Four naturally occurring conantokins have been identified and characterized to date, conantokin-G, conantokin-T, conantokin-R, and conantokin-L. The most extensively characterized, conantokin-G, is selective for subtypes of NMDA receptors containing the NR2B subunit. The conantokins have been synthesized and characterized in a number of animal models of human pathologies including pain, convulsive disorders, stroke, and Parkinson's disease. The potential pharmacological selectivity of the conantokins, coupled with their efficacy in preclinical models of disease and favorable safety profiles indicate that these peptides represent both novel probes for NMDA receptor function as well as an important class of compounds for continued investigation as human therapeutics.
4. Structure-function relationships of the NMDA receptor antagonist peptide, conantokin-R
M Prorok,F J Castellino,S E Warder,T Blandl FEBS Lett . 2000 Mar 24;470(2):139-46. doi: 10.1016/s0014-5793(00)01309-0.
Conantokin-R (con-R) is a gamma-carboxyglutamate-containing 27-residue neuroactive peptide present in the venom of Conus radiatus, and acts as a non-competitive antagonist of the N-methyl-D-aspartate (NMDA) receptor. This peptide features a single disulfide bond, a type of structural element found in most classes of conotoxins, but not in other conantokins. The NMDA receptor antagonist activity of chemically synthesized con-R was determined through an assay involving inhibition of the spermine-enhanced binding of the NMDA receptor channel blocker, [(3)H]MK-801, to rat brain membranes, and yielded an IC(50) of 93 nM. This value represents a 2-5 times better potency than con-G or con-T, the other two characterized conantokins. Circular dichroism (CD) analysis of the metal-free form of con-R is indicative of a low alpha-helical content. There is an increase in alpha-helicity upon the addition of divalent cations, such as Ca(2+), Mg(2+), or Zn(2+). Isothermal titration calorimetry experiments showed one detectable Mg(2+) binding site with a K(d) of 6.5 microM, and two binding sites for Zn(2+), with K(d) values of 150 nM and 170 microM. Residue-specific information of the conformational state of con-R was obtained by two-dimensional (1)H-NMR. Analyses of the alpha-proton chemical shifts, NOE patterns, and hydrogen exchange rates of the peptide indicated an alpha-helical conformation for residues 1-19. Synthetic con-R-derived peptide variants, containing deletions of 7 and 10 amino acid residues from the carboxy-terminus of the wild-type peptide, displayed unaltered cation binding and NMDA receptor antagonist properties. The alpha-helical secondary structures of the two truncation peptides were more stable than full-length con-R, as evidenced by CD measurements and reduced backbone hydrogen exchange rates. These results provide experimental evidence that the structural elements common to the three conantokins thus far identified are the primary determinants for receptor function and cation binding/secondary structure stability.
Online Inquiry
Verification code
Inquiry Basket