2-(Aminomethyl)benzoic acid
Need Assistance?
  • US & Canada:
    +
  • UK: +

2-(Aminomethyl)benzoic acid

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Cyclic Amino Acids
Catalog number
BAT-008801
CAS number
25672-97-3
Molecular Formula
C8H9NO2
Molecular Weight
151.16
2-(Aminomethyl)benzoic acid
IUPAC Name
2-(aminomethyl)benzoic acid
Synonyms
2-Aminomethylbenzoic acid; 2-Aminomethyl-benzoic acid
Purity
95%
Density
1.2±0.1 g/cm3
Boiling Point
310.7±17.0 °C at 760 mmHg
InChI
InChI=1S/C8H9NO2/c9-5-6-3-1-2-4-7(6)8(10)11/h1-4H,5,9H2,(H,10,11)
InChI Key
CLTMYNWFSDZKKI-UHFFFAOYSA-N
Canonical SMILES
C1=CC=C(C(=C1)CN)C(=O)O
1. Persistence of the sulfonylurea herbicides thifensulfuron-methyl, ethametsulfuron-methyl, and metsulfuron-methyl in farm dugouts (ponds)
Allan J Cessna, David B Donald, Jonathan Bailey, Marley Waiser, J V Headley J Environ Qual. 2006 Oct 27;35(6):2395-401. doi: 10.2134/jeq2005.0462. Print 2006 Nov-Dec.
Sulfonylurea herbicides are applied at relatively low rates (3 to 40 g ha(-1)) to control weeds in a variety of crops across the Canadian prairies. Because of their high phytotoxicity and the likelihood of their transport in surface runoff, there is concern about their possible impact to aquatic ecosystems. Little is known, however, about their persistence and behavior in aquatic ecosystems. To assess persistence in aquatic ecosystems, three prairie farm dugouts (ponds) were fortified with either thifensulfuron-methyl {methyl 3-[[[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl]amino]sulfonyl]-2-thiophenecarboxylate}, ethametsulfuron-methyl {methyl 2-[[[[[4-ethoxy-6-(methylamino)-1,3,5-triazin-2-yl]amino]carbonyl]amino]sulfonyl]benzoate} or metsulfuron-methyl {methyl 2-[[[[(4-methoxy-6-methyl-1,3,5-triazinyl)amino]carbonyl]amino]sulfonyl]benzoate}. The decreasing order of persistence of environmentally relevant concentrations (1 to 4.6 microg L(-1)) of these herbicides in dugout water over the June to October period was metsulfuron-methyl>ethametsulfuron-methyl>thifensulfuron-methyl. The corresponding dissipation half-lives (DT(50)) of 84, 30, and 16 d, respectively, are in the same relative order as the recropping intervals for these herbicides. Thifensulfuron-methyl showed a biphasic dissipation with slower dissipation during the winter months. In contrast, the dissipation of metsulfuron-methyl, the sulfonylurea herbicide with the longest DT(50), was somewhat enhanced under winter conditions. One of the major routes of sulfonylurea herbicide dissipation was removal from the water column when dugout water was lost during hydrological discharge. The relatively long persistence of these herbicides in water indicates that partitioning into sediments was minimal, the sulfonylurea and methyl ester linkages in these compounds were resistant to hydrolysis in weakly alkaline waters, and that microbial and photolytic degradation in dugout waters were slow.
2. Light-induced transformation of tribenuron-methyl on glass, soil, and plant surface
A K Bhattacharjee, P Dureja J Environ Sci Health B. 2002 Mar;37(2):131-40. doi: 10.1081/PFC-120002985.
Photolysis of tribenuron-methyl (methyl 2-[[[[N-(4-methoxy-6-methyl-1,3,5triazin-2-yl)methylamino]carbonyl]amino]sulfonyl]benzoate), a sulfonylurea herbicide, was studied as thin film on glass surface, soil surface, and plant surface. A number of photoproducts such as 4-methoxy-6-methyl-2-aminomethyl-1,3,5-triazine; methyl-2-(aminosulfonyl) benzoate; N-(2-carbomethoxyphenyl)-N-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-N'-methylurea; N-(2-carbomethoxyphenyl sulfonyl)-N-methyl urea; o-benzoic sulfimide and 4-methoxy-6-methyl-2-amino-1,3,5-triazine were identified by comparison of their GC-MS with the authentic standards. The rate of degradation in all the cases followed first-order kinetics with a statistically significant correlation coefficient. Rate of photodegradation was greater on glass surface than on soil surface.
3. Study of sorption of two sulfonylurea type of herbicides and their additives on soils and soil components
Rita Földényi, Zoltán Tóth, Gyöngyi Samu, Csaba Érsek J Environ Sci Health B. 2013;48(9):758-66. doi: 10.1080/03601234.2013.780853.
The sorption of two sulfonylurea type herbicides (chlorsulfuron: (1-(2-chlorophenylsulfonyl)-3-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)urea; tribenuron methyl: (methyl-2-[N-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-3-(methyl-ureido)-sulfonyl]-benzoate) was studied on sand and chernozem soil adsorbents. Experimental results for solutions prepared from the pure ingredients were compared to those prepared from the appropriate formulated commercial products. At small concentrations, the extent of adsorption of the active ingredient was higher than from the formulation containing solutions. Environmental fate and effects of the forming agents are less investigated because they rarely have concentration limits recommended by authorities. In addition to the adsorption of active ingredients, therefore, the sorption behavior of a widely used additive Supragil WP (sodium diisopropyl naphthalene sulphonate) was also studied. This dispersant is an anionic forming agent applied in a lot of pesticide formulations. Using three different soils (sand, brown forest, chernozem) as adsorbents two-step isotherms were obtained. The role of the soil organic matter (OM) was significant in the adsorption mechanism because the adsorbed amounts of the dispersant correlated with the specific surface area as well as with the total organic carbon (TOC) content of the soils. The sorption behavior indicates the operation of hydrophobic interaction mechanism between the soil OM and the dispersant. These results are supported by our further sorption experiments on clays, too. Zeta potential measurements seem to be promising for the interpretation of multi-step isotherms. The application of this technique proved that higher concentrations of the anionic forming agent assisted the peptization of soil organic matter (SOM) resulting in stable colloidal solution dominated by negative charges. Since the pesticides investigated are also anionic at the studied pH (7 and 8.3) the dissolved organics lead to the enhancement of the mobility of both the sulfonylureas and dispersant.
Online Inquiry
Verification code
Inquiry Basket