Agitoxin 2
Need Assistance?
  • US & Canada:
    +
  • UK: +

Agitoxin 2

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Agitoxin-2 is a potent and selective blocker of the Shaker type voltage-gated Kv1.3 and Kv1.1 channels. Agitoxin-2 inhibits Kv1.3 with an IC50 value of around 200 pM and Kv1.1 with an IC50 value of around 140 pM.

Category
Peptide Inhibitors
Catalog number
BAT-010357
CAS number
168147-41-9
Molecular Formula
C169H278N54O48S8
Molecular Weight
4090.87
Agitoxin 2
IUPAC Name
(2S)-6-amino-2-[[(2S)-1-[(2S,3R)-2-[[(1R,4S,7R,12R,15S,18S,21S,27S,30S,33S,39S,42R,47R,50S,56S,62S,65S,68R,75S,78S,81S,84S,89S,92S,98S)-47-[[(2S)-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S,3S)-2-[[(2S)-1-[(2S)-2-[(2-aminoacetyl)amino]-3-methylbutanoyl]pyrrolidine-2-carbonyl]amino]-3-methylpentanoyl]amino]-4-oxobutanoyl]amino]-3-methylbutanoyl]amino]-3-hydroxypropanoyl]amino]-15,39,75,92-tetrakis(4-aminobutyl)-81-(2-amino-2-oxoethyl)-65-(3-amino-3-oxopropyl)-33-benzyl-89-[(2S)-butan-2-yl]-30,78-bis(3-carbamimidamidopropyl)-18-(carboxymethyl)-50-[(1R)-1-hydroxyethyl]-56-(hydroxymethyl)-4-(1H-imidazol-4-ylmethyl)-21-methyl-27,84-bis(2-methylsulfanylethyl)-2,5,13,16,19,22,25,28,31,34,37,40,48,51,54,57,63,66,74,77,80,83,86,87,90,93,99-heptacosaoxo-9,10,44,45,70,71-hexathia-a,3,6,14,17,20,23,26,29,32,35,38,41,49,52,55,58,64,67,73,76,79,82,85,88,91,94-heptacosazapentacyclo[40.30.14.1412,68.058,62.094,98]hectane-7-carbonyl]amino]-3-hydroxybutanoyl]pyrrolidine-2-carbonyl]amino]hexanoic acid
Synonyms
AGTX2; H-Gly-Val-Pro-Ile-Asn-Val-Ser-Cys(1)-Thr-Gly-Ser-Pro-Gln-Cys(2)-Ile-Lys-Pro-Cys(3)-Lys-Asp-Ala-Gly-Met-Arg-Phe-Gly-Lys-Cys(1)-Met-Asn-Arg-Lys-Cys(2)-His-Cys(3)-Thr-Pro-Lys-OH; glycyl-L-valyl-L-prolyl-L-isoleucyl-L-asparagyl-L-valyl-L-seryl-L-cysteinyl-L-threonyl-glycyl-L-seryl-L-prolyl-L-glutaminyl-L-cysteinyl-L-isoleucyl-L-lysyl-L-prolyl-L-cysteinyl-L-lysyl-L-alpha-aspartyl-L-alanyl-glycyl-L-methionyl-L-arginyl-L-phenylalanyl-glycyl-L-lysyl-L-cysteinyl-L-methionyl-L-asparagyl-L-arginyl-L-lysyl-L-cysteinyl-L-histidyl-L-cysteinyl-L-threonyl-L-prolyl-L-lysine (8->28),(14->33),(18->35)-tris(disulfide)
Appearance
White Lyophilized Solid
Purity
>98%
Sequence
GVPINVSCTGSPQCIKPCKDAGMRFGKCMNRKCHCTPK (Disulfide bridge: Cys8 and Cys28, Cys14 and Cys33, Cys18 and Cys35)
Storage
Store at -20°C
Solubility
Soluble in water, saline buffer
InChI
InChI=1S/C169H278N54O48S8/c1-14-86(7)130-161(264)200-101(40-22-27-55-173)163(266)220-59-31-45-117(220)157(260)213-112-79-276-279-82-115(154(257)219-133(90(11)227)166(269)223-62-33-46-118(223)156(259)201-102(167(270)271)41-23-28-56-174)211-145(248)104(66-92-71-183-83-189-92)203-151(254)111-78-275-277-80-113(152(255)216-130)210-141(244)98(48-49-120(176)228)199-155(258)116-44-32-60-221(116)164(267)109(76-225)193-126(234)74-188-159(262)132(89(10)226)218-153(256)114(212-148(251)108(75-224)207-160(263)128(84(3)4)215-147(250)106(68-122(178)230)206-162(265)131(87(8)15-2)217-158(261)119-47-34-61-222(119)165(268)129(85(5)6)214-123(231)70-175)81-278-274-77-110(149(252)198-100(51-64-273-13)143(246)204-105(67-121(177)229)146(249)196-96(42-29-57-184-168(179)180)137(240)194-95(140(243)209-111)39-21-26-54-172)208-136(239)93(37-19-24-52-170)191-125(233)73-187-135(238)103(65-91-35-17-16-18-36-91)202-139(242)97(43-30-58-185-169(181)182)195-142(245)99(50-63-272-12)192-124(232)72-186-134(237)88(9)190-144(247)107(69-127(235)236)205-138(241)94(197-150(112)253)38-20-25-53-171/h16-18,35-36,71,83-90,93-119,128-133,224-227H,14-15,19-34,37-70,72-82,170-175H2,1-13H3,(H2,176,228)(H2,177,229)(H2,178,230)(H,183,189)(H,186,237)(H,187,238)(H,188,262)(H,190,247)(H,191,233)(H,192,232)(H,193,234)(H,194,240)(H,195,245)(H,196,249)(H,197,253)(H,198,252)(H,199,258)(H,200,264)(H,201,259)(H,202,242)(H,203,254)(H,204,246)(H,205,241)(H,206,265)(H,207,263)(H,208,239)(H,209,243)(H,210,244)(H,211,248)(H,212,251)(H,213,260)(H,214,231)(H,215,250)(H,216,255)(H,217,261)(H,218,256)(H,219,257)(H,235,236)(H,270,271)(H4,179,180,184)(H4,181,182,185)/t86-,87-,88-,89+,90+,93-,94-,95-,96-,97-,98-,99-,100-,101-,102-,103-,104-,105-,106-,107-,108-,109-,110-,111-,112-,113-,114-,115-,116-,117-,118-,119-,128-,129-,130-,131-,132-,133-/m0/s1
InChI Key
MNSSWZUIQUJZTG-OFZOPSLBSA-N
Canonical SMILES
CCC(C)C1C(=O)NC(C(=O)N2CCCC2C(=O)NC3CSSCC(NC(=O)C(NC(=O)C4CSSCC(C(=O)N1)NC(=O)C(NC(=O)C5CCCN5C(=O)C(NC(=O)CNC(=O)C(NC(=O)C(CSSCC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)N4)CCCCN)CCCNC(=N)N)CC(=O)N)CCSC)NC(=O)C(NC(=O)CNC(=O)C(NC(=O)C(NC(=O)C(NC(=O)CNC(=O)C(NC(=O)C(NC(=O)C(NC3=O)CCCCN)CC(=O)O)C)CCSC)CCCNC(=N)N)CC6=CC=CC=C6)CCCCN)NC(=O)C(CO)NC(=O)C(C(C)C)NC(=O)C(CC(=O)N)NC(=O)C(C(C)CC)NC(=O)C7CCCN7C(=O)C(C(C)C)NC(=O)CN)C(C)O)CO)CCC(=O)N)CC8=CNC=N8)C(=O)NC(C(C)O)C(=O)N9CCCC9C(=O)NC(CCCCN)C(=O)O)CCCCN
1. Agitoxin footprinting the shaker potassium channel pore
R MacKinnon, A Gross Neuron . 1996 Feb;16(2):399-406. doi: 10.1016/s0896-6273(00)80057-4.
In voltage-dependent K+ channels, each of the four identical subunits contributes one pore loop to the central ion selectivity unit at the interface between the subunits. The pore loop is also the target for scorpion venom peptide inhibitors. These inhibitors bind at the pore entryway between the four subunits and can assume any one of four orientations. The orientations become distinguishable only if the binding site symmetry is disrupted. We have used mutagenesis and site-directed chemical modification to alter pore loop amino acids in either one or four subunits. The effects of these alterations on inhibitor affinity define the eccentricity of amino acids in the pore entryway and imply a different secondary structure for the amino and carboxyl ends of the pore loop.
2. High-speed AFM reveals accelerated binding of agitoxin-2 to a K+ channel by induced fit
T Sumikama, S Oiki, T Uchihashi, A Sumino Sci Adv . 2019 Jul 3;5(7):eaax0495. doi: 10.1126/sciadv.aax0495.
Agitoxin-2 (AgTx2) from scorpion venom is a potent blocker of K+channels. The docking model has been elucidated, but it remains unclear whether binding dynamics are described by a two-state model (AgTx2-bound and AgTx2-unbound) or a more complicated mechanism, such as induced fit or conformational selection. Here, we observed the binding dynamics of AgTx2 to the KcsA channel using high-speed atomic force microscopy. From images of repeated binding and dissociation of AgTx2 to the channel, single-molecule kinetic analyses revealed that the affinity of the channel for AgTx2 increased during persistent binding and decreased during persistent dissociation. We propose a four-state model, including high- and low-affinity states of the channel, with relevant rate constants. An induced-fit pathway was dominant and accelerated binding by 400 times. This is the first analytical imaging of scorpion toxin binding in real time, which is applicable to various biological dynamics including channel ligands, DNA-modifier proteins, and antigen-antibody complexes.
3. Recombinant expression of margatoxin and agitoxin-2 in Pichia pastoris: an efficient method for production of KV1.3 channel blockers
Christine Beeton, Raveendra Anangi, Redwan Huq, Shyny Koshy, Woei-Jer Chuang, Glenn F King PLoS One . 2012;7(12):e52965. doi: 10.1371/journal.pone.0052965.
The K(v)1.3 voltage-gated potassium channel regulates membrane potential and calcium signaling in human effector memory T cells that are key mediators of autoimmune diseases such as multiple sclerosis, type 1 diabetes, and rheumatoid arthritis. Thus, subtype-specific K(v)1.3 blockers have potential for treatment of autoimmune diseases. Several K(v)1.3 channel blockers have been characterized from scorpion venom, all of which have an α/β scaffold stabilized by 3-4 intramolecular disulfide bridges. Chemical synthesis is commonly used for producing these disulfide-rich peptides but this approach is time consuming and not cost effective for production of mutants, fusion proteins, fluorescently tagged toxins, or isotopically labelled peptides for NMR studies. Recombinant production of K(v)1.3 blockers in the cytoplasm of E. coli generally necessitates oxidative refolding of the peptides in order to form their native disulfide architecture. An alternative approach that avoids the need for refolding is expression of peptides in the periplasm of E. coli but this often produces low yields. Thus, we developed an efficient Pichia pastoris expression system for production of K(v)1.3 blockers using margatoxin (MgTx) and agitoxin-2 (AgTx2) as prototypic examples. The Pichia system enabled these toxins to be obtained in high yield (12-18 mg/L). NMR experiments revealed that the recombinant toxins adopt their native fold without the need for refolding, and electrophysiological recordings demonstrated that they are almost equipotent with the native toxins in blocking K(V)1.3 (IC(50) values of 201±39 pM and 97 ± 3 pM for recombinant AgTx2 and MgTx, respectively). Furthermore, both recombinant toxins inhibited T-lymphocyte proliferation. A MgTx mutant in which the key pharmacophore residue K28 was mutated to alanine was ineffective at blocking K(V)1.3 and it failed to inhibit T-lymphocyte proliferation. Thus, the approach described here provides an efficient method of producing toxin mutants with a view to engineering K(v)1.3 blockers with therapeutic potential.
Online Inquiry
Verification code
Inquiry Basket