β-Amyloid 1-15
Need Assistance?
  • US & Canada:
    +
  • UK: +

β-Amyloid 1-15

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

β-Amyloid 1-15 is a fragment of Amyloid-β peptide found in plaques associated with Alzheimer's disease.

Category
Peptide Inhibitors
Catalog number
BAT-010673
CAS number
183745-81-5
Molecular Formula
C78H107N25O27
Molecular Weight
1826.84
β-Amyloid 1-15
IUPAC Name
(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-3-carboxypropanoyl]amino]propanoyl]amino]-4-carboxybutanoyl]amino]-3-phenylpropanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]-3-carboxypropanoyl]amino]-3-hydroxypropanoyl]amino]acetyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-4-carboxybutanoyl]amino]-3-methylbutanoyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]-5-oxopentanoic acid
Synonyms
Amyloid beta-protein(1-15); Amyloid β-Protein (1-15)
Sequence
DAEFRHDSGYEVHHQ
InChI
InChI=1S/C78H107N25O27/c1-37(2)63(76(128)101-54(26-43-31-85-36-90-43)74(126)99-52(24-41-29-83-34-88-41)72(124)96-49(77(129)130)15-18-57(80)106)103-69(121)48(17-20-60(110)111)95-70(122)50(23-40-11-13-44(105)14-12-40)92-58(107)32-87-66(118)56(33-104)102-75(127)55(28-62(114)115)100-73(125)53(25-42-30-84-35-89-42)98-67(119)46(10-7-21-86-78(81)82)94-71(123)51(22-39-8-5-4-6-9-39)97-68(120)47(16-19-59(108)109)93-64(116)38(3)91-65(117)45(79)27-61(112)113/h4-6,8-9,11-14,29-31,34-38,45-56,63,104-105H,7,10,15-28,32-33,79H2,1-3H3,(H2,80,106)(H,83,88)(H,84,89)(H,85,90)(H,87,118)(H,91,117)(H,92,107)(H,93,116)(H,94,123)(H,95,122)(H,96,124)(H,97,120)(H,98,119)(H,99,126)(H,100,125)(H,101,128)(H,102,127)(H,103,121)(H,108,109)(H,110,111)(H,112,113)(H,114,115)(H,129,130)(H4,81,82,86)/t38-,45-,46-,47-,48-,49-,50-,51-,52-,53-,54-,55-,56-,63-/m0/s1
InChI Key
CSCAPVBQOYQJJF-NOZGEEMHSA-N
Canonical SMILES
CC(C)C(C(=O)NC(CC1=CNC=N1)C(=O)NC(CC2=CNC=N2)C(=O)NC(CCC(=O)N)C(=O)O)NC(=O)C(CCC(=O)O)NC(=O)C(CC3=CC=C(C=C3)O)NC(=O)CNC(=O)C(CO)NC(=O)C(CC(=O)O)NC(=O)C(CC4=CNC=N4)NC(=O)C(CCCNC(=N)N)NC(=O)C(CC5=CC=CC=C5)NC(=O)C(CCC(=O)O)NC(=O)C(C)NC(=O)C(CC(=O)O)N
1. The Gut Microbiota and Alzheimer's Disease
Chunmei Jiang, Guangning Li, Pengru Huang, Zhou Liu, Bin Zhao J Alzheimers Dis. 2017;58(1):1-15. doi: 10.3233/JAD-161141.
The gut microbiota comprises a complex community of microorganism species that resides in our gastrointestinal ecosystem and whose alterations influence not only various gut disorders but also central nervous system disorders such as Alzheimer's disease (AD). AD, the most common form of dementia, is a neurodegenerative disorder associated with impaired cognition and cerebral accumulation of amyloid-β peptides (Aβ). Most notably, the microbiota-gut-brain axis is a bidirectional communication system that is not fully understood, but includes neural, immune, endocrine, and metabolic pathways. Studies in germ-free animals and in animals exposed to pathogenic microbial infections, antibiotics, probiotics, or fecal microbiota transplantation suggest a role for the gut microbiota in host cognition or AD-related pathogenesis. The increased permeability of the gut and blood-brain barrier induced by microbiota dysbiosis may mediate or affect AD pathogenesis and other neurodegenerative disorders, especially those associated with aging. In addition, bacteria populating the gut microbiota can secrete large amounts of amyloids and lipopolysaccharides, which might contribute to the modulation of signaling pathways and the production of proinflammatory cytokines associated with the pathogenesis of AD. Moreover, imbalances in the gut microbiota can induce inflammation that is associated with the pathogenesis of obesity, type 2 diabetes mellitus, and AD. The purpose of this review is to summarize and discuss the current findings that may elucidate the role of the gut microbiota in the development of AD. Understanding the underlying mechanisms may provide new insights into novel therapeutic strategies for AD.
2. Amyloid-β(1-15/16) as a marker for γ-secretase inhibition in Alzheimer's disease
Erik Portelius, et al. J Alzheimers Dis. 2012;31(2):335-41. doi: 10.3233/JAD-2012-120508.
Amyloid-β (Aβ) producing enzymes are key targets for disease-modifying Alzheimer's disease (AD) therapies since Aβ trafficking is at the core of AD pathogenesis. Development of such drugs might benefit from the identification of markers indicating in vivo drug effects in the central nervous system. We have previously shown that Aβ(1-15) is produced by concerted β-and α-secretase cleavage of amyloid-β protein precursor (AβPP). Here, we test the hypothesis that this pathway is more engaged upon γ-secretase inhibition in humans, and cerebrospinal fluid (CSF) levels of Aβ(1-15/16) represent a biomarker for this effect. Twenty healthy men were treated with placebo (n = 5) or the γ-secretase inhibitor semagacestat (100 mg [n = 5], 140 mg [n = 5], or 280 mg [n = 5]). CSF samples were collected hourly over 36 hours and 10 time points were analyzed by immunoassay for Aβ(1-15/16), Aβ(x-38), Aβ(x-40), Aβ(x-42), sAβPPα, and sAβPPβ. The CSF concentration of Aβ(1-15/16) showed a dose-dependent response over 36 hours. In the 280 mg treatment group, a transient increase was seen with a maximum of 180% relative to baseline at 9 hours post administration of semagacestat. The concentrations of Aβ(x-38), Aβ(x-40), and Aβ(x-42) decreased the first 9 hours followed by increased concentrations after 36 hours relative to baseline. No significant changes were detected for CSF sAβPPα and sAβPPβ. Our data shows that CSF levels of Aβ(1-15/16) increase during treatment with semagacestat supporting its feasibility as a pharmacodynamic biomarker for drug candidates aimed at inhibiting γ-secretase-mediated AβPP-processing.
Online Inquiry
Verification code
Inquiry Basket