Astressin
Need Assistance?
  • US & Canada:
    +
  • UK: +

Astressin

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Astressin is a novel potent corticotropin releasing factor (CRF) antagonist. Astressin may be a useful tool to explore functional CRF-dependent physiological pathways in specific brain nuclei.

Category
Peptide Inhibitors
Catalog number
BAT-010444
CAS number
170809-51-5
Molecular Formula
C161H269N49O42
Molecular Weight
3563.16
Astressin
IUPAC Name
(4S)-5-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-5-amino-1-[[(3S,6S,9S,18S)-18-[[(2S)-4-amino-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S,3S)-1-[[(2S,3S)-1-amino-3-methyl-1-oxopentan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-4-carboxy-1-oxobutan-2-yl]amino]-1-oxohexan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1,4-dioxobutan-2-yl]carbamoyl]-3-(1H-imidazol-4-ylmethyl)-6-methyl-2,5,8,12-tetraoxo-1,4,7,13-tetrazacyclooctadec-9-yl]amino]-1,5-dioxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-4-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2R)-2-amino-3-phenylpropanoyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]-5-carbamimidamidopentanoyl]amino]-4-carboxybutanoyl]amino]-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]-4-carboxybutanoyl]amino]hexanoyl]amino]propanoyl]amino]-5-carbamimidamidopentanoyl]amino]propanoyl]amino]-5-oxopentanoic acid
Synonyms
(D-Phe12,Nle21·38,Glu30,Lys33)-CRF (12-41) (human, rat); H-D-Phe-His-Leu-Leu-Arg-Glu-Val-Leu-Glu-Nle-Ala-Arg-Ala-Glu-Gln-Leu-Ala-Gln-Glu(1)-Ala-His-Lys(1)-Asn-Arg-Lys-Leu-Nle-Glu-Ile-Ile-NH2
Appearance
White or Off-white Lyophilized Powder
Purity
≥95%
Density
1.43±0.1 g/cm3 (Predicted)
Sequence
d-Phe-HLLREVLE-NLE-ARAEQLAQEAHKNRKL-NLE-EII-NH2
Storage
Store at -20°C
Solubility
Soluble in DMSO
InChI
InChI=1S/C161H269N49O42/c1-23-27-41-96(189-145(239)107(52-59-123(217)218)199-152(246)114(71-84(13)14)207-157(251)126(85(15)16)208-147(241)108(53-60-124(219)220)197-140(234)102(47-38-66-179-161(172)173)193-151(245)112(69-82(9)10)204-153(247)113(70-83(11)12)205-155(249)116(74-94-77-175-79-181-94)201-134(228)95(163)72-92-39-30-29-31-40-92)135(229)182-88(19)130(224)186-100(45-36-64-177-159(168)169)136(230)183-89(20)131(225)188-106(51-58-122(215)216)144(238)195-104(49-56-119(165)212)146(240)202-110(67-80(5)6)149(243)185-90(21)132(226)187-103(48-55-118(164)211)143(237)196-105-50-57-121(214)176-63-35-33-44-99(192-154(248)115(73-93-76-174-78-180-93)200-133(227)91(22)184-137(105)231)142(236)206-117(75-120(166)213)156(250)194-101(46-37-65-178-160(170)171)139(233)190-98(43-32-34-62-162)141(235)203-111(68-81(7)8)150(244)191-97(42-28-24-2)138(232)198-109(54-61-125(221)222)148(242)210-128(87(18)26-4)158(252)209-127(129(167)223)86(17)25-3/h29-31,39-40,76-91,95-117,126-128H,23-28,32-38,41-75,162-163H2,1-22H3,(H2,164,211)(H2,165,212)(H2,166,213)(H2,167,223)(H,174,180)(H,175,181)(H,176,214)(H,182,229)(H,183,230)(H,184,231)(H,185,243)(H,186,224)(H,187,226)(H,188,225)(H,189,239)(H,190,233)(H,191,244)(H,192,248)(H,193,245)(H,194,250)(H,195,238)(H,196,237)(H,197,234)(H,198,232)(H,199,246)(H,200,227)(H,201,228)(H,202,240)(H,203,235)(H,204,247)(H,205,249)(H,206,236)(H,207,251)(H,208,241)(H,209,252)(H,210,242)(H,215,216)(H,217,218)(H,219,220)(H,221,222)(H4,168,169,177)(H4,170,171,178)(H4,172,173,179)/t86-,87-,88-,89-,90-,91-,95+,96-,97-,98-,99-,100-,101-,102-,103-,104-,105-,106-,107-,108-,109-,110-,111-,112-,113-,114-,115-,116-,117-,126-,127-,128-/m0/s1
InChI Key
HPYIIXJJVYSMCV-MGDXKYBTSA-N
Canonical SMILES
CCCCC(C(=O)NC(C)C(=O)NC(CCCNC(=N)N)C(=O)NC(C)C(=O)NC(CCC(=O)O)C(=O)NC(CCC(=O)N)C(=O)NC(CC(C)C)C(=O)NC(C)C(=O)NC(CCC(=O)N)C(=O)NC1CCC(=O)NCCCCC(NC(=O)C(NC(=O)C(NC1=O)C)CC2=CNC=N2)C(=O)NC(CC(=O)N)C(=O)NC(CCCNC(=N)N)C(=O)NC(CCCCN)C(=O)NC(CC(C)C)C(=O)NC(CCCC)C(=O)NC(CCC(=O)O)C(=O)NC(C(C)CC)C(=O)NC(C(C)CC)C(=O)N)NC(=O)C(CCC(=O)O)NC(=O)C(CC(C)C)NC(=O)C(C(C)C)NC(=O)C(CCC(=O)O)NC(=O)C(CCCNC(=N)N)NC(=O)C(CC(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC3=CNC=N3)NC(=O)C(CC4=CC=CC=C4)N
1.Peripheral activation of corticotropin-releasing factor receptor 2 inhibits food intake and alters meal structures in mice.
Wang L;Stengel A;Goebel M;Martinez V;Gourcerol G;Rivier J;Taché Y Peptides. 2011 Jan;32(1):51-9. doi: 10.1016/j.peptides.2010.10.017. Epub 2010 Oct 20.
The orexigenic effect of urocortins (Ucns), namely Ucn 1, Ucn 2 and Ucn 3 through activation of corticotropin-releasing factor (CRF) receptors, has been well characterized after injection into the brain but not in the periphery. We examined the role of CRF receptor subtype 2 (CRF(2)) in the regulation of food intake using intraperitoneal (ip) injection of Ucns and the selective CRF(2) antagonist, astressin(2)-B, and CRF(2) knockout (-/-) mice. Meal structures were monitored using an automated episodic solid food intake monitoring system. Ucn 2 (3, 10 or 30 μg/kg, ip) induced a rapid in onset, long lasting and dose-dependent decrease (38%, 66% and 86%, respectively at 4h) of cumulative food intake after an overnight fast in mice. Ucn 3 anorexic effect was 10-times less potent. Astressin(2)-B (30 or 100 μg/kg) injected ip, but not intracerebroventricularly, blocked the inhibitory effect of ip Ucn 1 and Ucn 2 (10 μg/kg). Fasted CRF(2-/-) mice did not respond to ip Ucn 1 (10 μg/kg). Meal microstructure analysis of the 4-h re-feeding response to an overnight fast showed that Ucn 2 (10 μg/kg, ip) decreased meal size and duration, but increased meal frequency. In mice fed ad libitum, Ucn 2 (30 μg/kg) injected ip before the dark phase decreased the 4-h nocturnal meal size and duration without influencing meal frequency while the 10 μg/kg dose had no effect.
2.The type 2 corticotrophin-releasing hormone receptor mediates orexin A-induced luteinising hormone suppression in ovariectomised rats.
Iwasa T;Matsuzaki T;Kiyokawa M;Shimizu F;Minakuchi M;Kuwahara A;Maegawa M;Yasui T;Irahara M J Neuroendocrinol. 2007 Sep;19(9):732-8.
Orexins are thought to be regulatory factors of the arousal and sleep patterns. They also affect immune, feeding, autonomic and neuroendocrine systems. We have previously shown that intracerebroventricular (i.c.v.) injection of orexin decreases pulsatile luteinising hormone (LH) secretion in ovariectomised (OVX) rats. However, the details of this mechanism have not been fully examined. Intracerebroventricular injection of orexin A also stimulates corticotrophin-releasing hormone (CRH) systems, which have been implicated in the stress-induced suppression of reproductive function. In the present study, we investigated the role of CRH systems in orexin-induced LH suppression. OVX rats were implanted with i.c.v. and intravenous (i.v.) cannulae. After i.c.v. injection of orexin and/or CRH receptor antagonists, blood samples were collected through the i.v. cannula at 6-min intervals for 120 min for LH measurement. Intracerebroventricular injection of orexin A or B (3 nmol/2.5 microl) suppressed pulsatile LH secretion. Coadministration of orexin A and alpha-helical corticotrophic-releasing factor (CRF), a nonselective CRH receptor antagonist (13 nmol/2.5 microl), or astressin(2)B, a selective type2 (CRH-R2) CRH receptor antagonist (28 nmol/2.
3.Potent and long-acting corticotropin releasing factor (CRF) receptor 2 selective peptide competitive antagonists.
Rivier J;Gulyas J;Kirby D;Low W;Perrin MH;Kunitake K;DiGruccio M;Vaughan J;Reubi JC;Waser B;Koerber SC;Martinez V;Wang L;Taché Y;Vale W J Med Chem. 2002 Oct 10;45(21):4737-47.
We present evidence that members of the corticotropin releasing factor (CRF) family assume distinct structures when interacting with the CRF(1) and CRF(2) receptors. Predictive methods, physicochemical measurements, and structure-activity relationship studies have suggested that CRF, its family members, and competitive antagonists such as astressin [cyclo(30-33)[DPhe(12),Nle(21),Glu(30),Lys(33),Nle(38)]hCRF((12-41))] assume an alpha-helical conformation when interacting with their receptors. We had shown that alpha-helical CRF((9-41)) and sauvagine showed some selectivity for CRF receptors other than that responsible for ACTH secretion(1) and later for CRF2.(2) More recently, we suggested the possibility of a helix-turn-helix motif around a turn encompassing residues 30-33(3) that would confer high affinity for both CRF(1) and CRF(2)(2,4) in agonists and antagonists of all members of the CRF family.(3) On the other hand, the substitutions that conferred ca. 100-fold CRF(2) selectivity to the antagonist antisauvagine-30 [[DPhe(11),His(12)]sauvagine((11-40))] did not confer such property to the corresponding N-terminally extended agonists. We find here that a Glu(32)-Lys(35) side chain to side chain covalent lactam constraint in hCRF and the corresponding Glu(31)-Lys(34) side chain to side chain covalent lactam constraint in sauvagine yield potent ligands that are selective for CRF(2).
Online Inquiry
Verification code
Inquiry Basket