Need Assistance?
  • US & Canada:
    +
  • UK: +

Aurein-2.3

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Aurein-2.3 is an antimicrobial peptide and nNOS inhibitor produced by Litoria aurea (Ranoidea aurea, Green and golden bell frog). It has antibacterial and anticancer activity.

Category
Functional Peptides
Catalog number
BAT-013048
Molecular Formula
C76H131N19O19
Molecular Weight
1615.00
IUPAC Name
(3S)-3-[[(2S)-2-[[(2S)-2-[(2-aminoacetyl)amino]-4-methylpentanoyl]amino]-3-phenylpropanoyl]amino]-4-[[(2S,3S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[2-[[(2S)-1-[[(2S,3S)-1-[[2-[[(2S)-1-[[(2S)-1-amino-4-methyl-1-oxopentan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-3-methyl-1-oxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-3-methyl-1-oxobutan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-1-oxohexan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-4-oxobutanoic acid
Synonyms
H-Gly-Leu-Phe-Asp-Ile-Val-Lys-Lys-Val-Val-Gly-Ala-Ile-Gly-Ser-Leu-NH2; glycyl-L-leucyl-L-phenylalanyl-L-alpha-aspartyl-L-isoleucyl-L-valyl-L-lysyl-L-lysyl-L-valyl-L-valyl-glycyl-L-alanyl-L-isoleucyl-glycyl-L-seryl-L-leucinamide; Aurein 2.3
Appearance
Powder
Purity
≥97%
Sequence
GLFDIVKKVVGAIGSL-NH2
Storage
Store at -20°C
InChI
InChI=1S/C76H131N19O19/c1-16-44(13)62(73(111)82-37-57(99)85-54(38-96)71(109)88-50(64(80)102)31-39(3)4)94-65(103)46(15)83-56(98)36-81-72(110)59(41(7)8)92-75(113)61(43(11)12)91-67(105)49(28-22-24-30-78)86-66(104)48(27-21-23-29-77)87-74(112)60(42(9)10)93-76(114)63(45(14)17-2)95-70(108)53(34-58(100)101)90-69(107)52(33-47-25-19-18-20-26-47)89-68(106)51(32-40(5)6)84-55(97)35-79/h18-20,25-26,39-46,48-54,59-63,96H,16-17,21-24,27-38,77-79H2,1-15H3,(H2,80,102)(H,81,110)(H,82,111)(H,83,98)(H,84,97)(H,85,99)(H,86,104)(H,87,112)(H,88,109)(H,89,106)(H,90,107)(H,91,105)(H,92,113)(H,93,114)(H,94,103)(H,95,108)(H,100,101)/t44-,45-,46-,48-,49-,50-,51-,52-,53-,54-,59-,60-,61-,62-,63-/m0/s1
InChI Key
CMXOYIOSJQPFTO-SDCDTWBGSA-N
Canonical SMILES
CCC(C)C(C(=O)NCC(=O)NC(CO)C(=O)NC(CC(C)C)C(=O)N)NC(=O)C(C)NC(=O)CNC(=O)C(C(C)C)NC(=O)C(C(C)C)NC(=O)C(CCCCN)NC(=O)C(CCCCN)NC(=O)C(C(C)C)NC(=O)C(C(C)CC)NC(=O)C(CC(=O)O)NC(=O)C(CC1=CC=CC=C1)NC(=O)C(CC(C)C)NC(=O)CN
1. Effect of membrane composition on antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs
John T J Cheng, John D Hale, Melissa Elliot, Robert E W Hancock, Suzana K Straus Biophys J. 2009 Jan;96(2):552-65. doi: 10.1016/j.bpj.2008.10.012.
The effects of hydrophobic thickness and the molar phosphatidylglycerol (PG) content of lipid bilayers on the structure and membrane interaction of three cationic antimicrobial peptides were examined: aurein 2.2, aurein 2.3 (almost identical to aurein 2.2, except for a point mutation at residue 13), and a carboxy C-terminal analog of aurein 2.3. Circular dichroism results indicated that all three peptides adopt an alpha-helical structure in the presence of a 3:1 molar mixture of 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DMPC/DMPG), and 1:1 and 3:1 molar mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPC/POPG). Oriented circular dichroism data for three different lipid compositions showed that all three peptides were surface-adsorbed at low peptide concentrations, but were inserted into the membrane at higher peptide concentrations. The (31)P solid-state NMR data of the three peptides in the DMPC/DMPG and POPC/POPG bilayers showed that all three peptides significantly perturbed lipid headgroups, in a peptide or lipid composition-dependent manner. Differential scanning calorimetry results demonstrated that both amidated aurein peptides perturbed the overall phase structure of DMPC/DMPG bilayers, but perturbed the POPC/POPG chains less. The nature of the perturbation of DMPC/DMPG bilayers was most likely micellization, and for the POPC/POPG bilayers, distorted toroidal pores or localized membrane aggregate formation. Calcein release assay results showed that aurein peptide-induced membrane leakage was more severe in DMPC/DMPG liposomes than in POPC/POPG liposomes, and that aurein 2.2 induced higher calcein release than aurein 2.3 and aurein 2.3-COOH from 1:1 and 3:1 POPC/POPG liposomes. Finally, DiSC(3)5 assay data further delineated aurein 2.2 from the others by showing that it perturbed the lipid membranes of intact S. aureus C622 most efficiently, whereas aurein 2.3 had the same efficiency as gramicidin S, and aurein 2.3-COOH was the least efficient. Taken together, these data show that the membrane interactions of aurein peptides are affected by the hydrophobic thickness of the lipid bilayers and the PG content.
2. Aurein 2.3 functionality is supported by oblique orientated α-helical formation
Manuela Mura, Sarah R Dennison, Andrei V Zvelindovsky, David A Phoenix Biochim Biophys Acta. 2013 Feb;1828(2):586-94. doi: 10.1016/j.bbamem.2012.08.019. Epub 2012 Aug 31.
In this study, an amphibian antimicrobial peptide, aurein 2.3, was predicted to use oblique orientated α-helix formation in its mechanism of membrane destabilisation. Molecular dynamic (MD) simulations and circular dichroism (CD) experimental data suggested that aurein 2.3 exists in solution as unstructured monomers and folds to form predominantly α-helical structures in the presence of a dimyristoylphosphatidylcholine membrane. MD showed that the peptide was highly surface active, which supported monolayer data where the peptide induced surface pressure changes>34 mNm(-1). In the presence of a lipid membrane MD simulations suggested that under hydrophobic mismatch the peptide is seen to insert via oblique orientation with a phenylalanine residue (PHE3) playing a key role in the membrane interaction. There is evidence of snorkelling leucine residues leading to further membrane disruption and supporting the high level of lysis observed using calcein release assays (76%). Simulations performed at higher peptide/lipid ratio show peptide cooperativity is key to increased efficiency leading to pore-formation.
3. Characterization of the structure and membrane interaction of the antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs
Yeang-Ling Pan, John T-J Cheng, John Hale, Jinhe Pan, Robert E W Hancock, Suzana K Straus Biophys J. 2007 Apr 15;92(8):2854-64. doi: 10.1529/biophysj.106.097238. Epub 2007 Jan 26.
The structure and membrane interaction of the antimicrobial peptide aurein 2.2 (GLFDIVKKVVGALGSL-CONH(2)), aurein 2.3 (GLFDIVKKVVGAIGSL-CONH(2)), both from Litoria aurea, and a carboxy C-terminal analog of aurein 2.3 (GLFDIVKKVVGAIGSL-COOH) were studied to determine which features of this class of peptides are key to activity. Circular dichroism and solution-state NMR data indicate that all three peptides adopt an alpha-helical structure in the presence of trifluoroethanol or lipids such as 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and a 1:1 mixture of DMPC and 1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DMPG). Oriented circular dichroism was used to determine the orientation of the peptides in lipid bilayers over a range of concentrations (peptide/lipid molar ratios (P/L) = 1:15-1:120) in DMPC and 1:1 DMPC/DMPG, in the liquid crystalline state. The results demonstrate that in DMPC all three peptides are surface adsorbed over a range of low peptide concentrations but insert into the bilayers at high peptide concentrations. This finding is corroborated by (31)P-solid-state NMR data of the three peptides in DMPC, which shows that at high peptide concentrations the peptides perturb the membrane. Oriented circular dichroism data of the aurein peptides in 1:1 DMPC/DMPG, on the other hand, show that the peptides with amidated C-termini readily insert into the membrane bilayers over the concentration range studied (P/L = 1:15-1:120), whereas the aurein 2.3 peptide with a carboxy C-terminus inserts at a threshold concentration of P/L* between 1:80 and 1:120. Overall, the data presented here suggest that all three peptides studied interact with phosphatidylcholine membranes in a manner which is similar to aurein 1.2 and citropin 1.1, as reported in the literature, with no correlation to the reported activity. On the other hand, both aurein 2.2 and aurein 2.3 behave similarly in phosphatidylcholine/phosphatidylglycerol (PC/PG) membranes, whereas aurein 2.3-COOH inserts less readily. As this does not correlate with reported activities, minimal inhibitory concentrations of the three peptides against Staphylococcus aureus (strain C622, ATCC 25923) and Staphylococcus epidermidis (strain C621--clinical isolate) were determined. The correlation between structure, membrane interaction, and activity are discussed in light of these results.
Online Inquiry
Verification code
Inquiry Basket