Need Assistance?
  • US & Canada:
    +
  • UK: +

Aurein-2.5

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Aurein-2.5 is an antimicrobial peptide produced by Litoria raniformis (Southern bell frog) and Litoria aurea (Green and golden bell frog). It has antibacterial and anticancer activity.

Category
Functional Peptides
Catalog number
BAT-013049
Molecular Formula
C79H129N19O19
Molecular Weight
1649.02
IUPAC Name
(3S)-3-[[(2S)-2-[[(2S)-2-[(2-aminoacetyl)amino]-4-methylpentanoyl]amino]-3-phenylpropanoyl]amino]-4-[[(2S,3S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[2-[[(2S)-1-[[(2S)-1-[[2-[[(2S)-1-[[(2S)-1-amino-4-methyl-1-oxopentan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-3-methyl-1-oxobutan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-1-oxohexan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-4-oxobutanoic acid
Synonyms
Aurein 2.5; H-Gly-Leu-Phe-Asp-Ile-Val-Lys-Lys-Val-Val-Gly-Ala-Phe-Gly-Ser-Leu-NH2; glycyl-L-leucyl-L-phenylalanyl-L-alpha-aspartyl-L-isoleucyl-L-valyl-L-lysyl-L-lysyl-L-valyl-L-valyl-glycyl-L-alanyl-L-phenylalanyl-glycyl-L-seryl-L-leucinamide
Appearance
Powder
Purity
>98%
Sequence
GLFDIVKKVVGAFGSL-NH2
Storage
Store at -20°C
InChI
InChI=1S/C79H129N19O19/c1-14-47(12)66(98-74(112)57(37-62(103)104)94-73(111)56(36-50-27-19-16-20-28-50)93-72(110)54(34-43(4)5)87-59(100)38-82)79(117)97-64(45(8)9)77(115)90-51(29-21-23-31-80)70(108)89-52(30-22-24-32-81)71(109)95-65(46(10)11)78(116)96-63(44(6)7)76(114)85-39-60(101)86-48(13)68(106)92-55(35-49-25-17-15-18-26-49)69(107)84-40-61(102)88-58(41-99)75(113)91-53(67(83)105)33-42(2)3/h15-20,25-28,42-48,51-58,63-66,99H,14,21-24,29-41,80-82H2,1-13H3,(H2,83,105)(H,84,107)(H,85,114)(H,86,101)(H,87,100)(H,88,102)(H,89,108)(H,90,115)(H,91,113)(H,92,106)(H,93,110)(H,94,111)(H,95,109)(H,96,116)(H,97,117)(H,98,112)(H,103,104)/t47-,48-,51-,52-,53-,54-,55-,56-,57-,58-,63-,64-,65-,66-/m0/s1
InChI Key
IWQLCLFYFFHMGQ-XIFPNSEASA-N
Canonical SMILES
CCC(C)C(C(=O)NC(C(C)C)C(=O)NC(CCCCN)C(=O)NC(CCCCN)C(=O)NC(C(C)C)C(=O)NC(C(C)C)C(=O)NCC(=O)NC(C)C(=O)NC(CC1=CC=CC=C1)C(=O)NCC(=O)NC(CO)C(=O)NC(CC(C)C)C(=O)N)NC(=O)C(CC(=O)O)NC(=O)C(CC2=CC=CC=C2)NC(=O)C(CC(C)C)NC(=O)CN
1. Role of molecular architecture on the relative efficacy of aurein 2.5 and modelin 5
Sarah R Dennison, Leslie H G Morton, David A Phoenix Biochim Biophys Acta. 2012 Sep;1818(9):2094-102. doi: 10.1016/j.bbamem.2012.05.015. Epub 2012 May 19.
In order to gain an insight into the mechanism of antimicrobial peptide action, aurein 2.5 and modelin-5 were studied. When tested against Staphylococcus aureus, aurein 2.5 showed approximately 5-fold greater efficacy even though the higher net positive charge and higher helix stability shown by modelin-5 would have predicated modelin-5 to be the more effective antimicrobial. However, in the presence of S. aureus membrane mimics, aurein 2.5 showed greater helical content (75% helical) relative to modelin-5 (51% helical) indicative of increase in membrane association. This was supported by monolayer data showing that aurein 2.5 (6.6mNm(-1)) generated greater pressure changes than modelin-5 (5.3mNm(-1)). Peptide monolayers indicted that modelin-5 formed a helix horizontal to the plane of an asymmetric interface which would be supported by the even distribution of charge and hydrophobicity along the helical long axis and facilitate lysis by non-specific membrane binding. In contrast, a groove structure observed on the surface of aurein 2.5 was predicted to be the cause of enhanced lipid binding (K(d)=75μM) relative to modelin-5 (K(d)=118μM) and the balance of hydrophobicity along the aurein 2.5 long axis supported deep penetration into the membrane in a tilt formation. This oblique orientation generates greater lytic efficacy in high anionic lipid (71%) compared to modelin-5 (32%).
2. The interaction of aurein 2.5 with fungal membranes
Sarah R Dennison, Leslie H G Morton, Frederick Harris, David A Phoenix Eur Biophys J. 2014 Jul;43(6-7):255-64. doi: 10.1007/s00249-014-0959-8. Epub 2014 Apr 13.
Aurein 2.5 (GLFDIVKKVVGAFGSL-NH2) is an antimicrobial peptide, which was seen to have activity against Stachybotris chartarum, Penicillium roseopurpureum and Aspergillus flavus with minimum fungicidal concentrations in the range 250-500 μM. S. chartarum showed enhanced susceptibility to lysis as compared to P. roseopurpureum and A. flavus, (44, 26 and 28 % respectively). Monolayers formed from lipid membrane extracts derived from S. chartarum, P. roseopurpureum and A. flavus showed maximal surface pressure changes of 13.5, 10.3 and 10.2 mN m(-1) respectively. However, aurein 2.5 adopted similar levels of α-helical structure (circa 45 %) in the presence of vesicles formed from membrane lipid extracts derived from all three fungi. These data imply that differential activity is not due to targeting and membrane association but linked to the ability of the bound peptide to lyse the cells. At sterol levels mimetic of eukaryotic systems, high levels of α-helical structure (circa 50 %) were also observed and hence similar binding. However, enhanced sterol levels (>0.6) led to a reduction in monolayer membrane interaction, suggesting that the sterols influence efficacy. Consistent with this suggestion, thermodynamic analysis showed that the peptide was able to destabilise model fungal monolayers, as indicated by negative values of ∆Gmix.
3. Effect of amidation on the antimicrobial peptide aurein 2.5 from Australian southern bell frogs
Sarah R Dennison, Leslie H G Morton, David A Phoenix Protein Pept Lett. 2012 Jun 1;19(6):586-91. doi: 10.2174/092986612800494110.
Aurein 2.5 is a naturally C-terminally amidated amphibian antimicrobial peptide. C-terminal amidation can increase efficacy and hence a comparison was made between aurein 2.5-CONH2 and its nonamidated analogue. Amidation of the C-terminal carboxyl of aurein 2.5 enhanced antimicrobial activity 2.5- fold against Klebsiella pneumonia. Our results demonstrate that both peptide analogues had high surface activities (23 mN m-1for aurein 2.5-COOH and 26 mN m-1 aurein 2.5-CONH2). Circular dichroism measurements suggest that the helical content of the amidated form, in the presence of trifluoroethanol, was significantly enhanced (33.66 % for aurein 2.5-COOH and 60.89 % aurein 2.5-CONH2). The interaction of aurein 2.5 with bacterial cell membrane mimics was investigated using Langmuir monolayers. Aurein 2.5-CONH2 induced stable surface pressure changes in monolayers formed from K. pneumonia (circa 4.7 mN m-1), however, lower surface pressure changes were observed for aurein 2.5- COOH (circa 3.8 mN m-1). The data shows that in the case of aurein 2.5, amidation is able to enhance antibacterial activity and it is proposed that the increase in effectiveness is due to stabilization of the α-helical structure at the membrane interface.
Online Inquiry
Verification code
Inquiry Basket