Need Assistance?
  • US & Canada:
    +
  • UK: +

BA 1

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

BA 1 is a potent bombesin receptor subtype 3 (BRS-3; BB3) agonist (IC50 = 2.52 nM), and also acts as a GRPR (BB1) and NMBR (BB2) agonist (IC50 = 0.26 and 1.55 nM, respectively). BA 1 enhances glucose transport in obese and diabetic primary myocytes. BA 1 was shown to stimulate NCI-H1299 lung cancer cell proliferation in vitro.

Category
Peptide Inhibitors
Catalog number
BAT-010283
CAS number
183241-31-8
Molecular Formula
C57H76N14O11
Molecular Weight
1133.32
BA 1
IUPAC Name
(2S)-2-[[(2R)-2-amino-3-(4-hydroxyphenyl)propanoyl]amino]-N-[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-amino-1-oxohexan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-(1H-imidazol-5-yl)-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]pentanediamide
Synonyms
BA 1; BA-1; BA1
Density
1.3±0.1 g/cm3
Boiling Point
1626.5±65.0°C at 760 mmHg
Sequence
YQWAVAHFX(Modifications: Tyr-1= D-Tyr, Ala-6 = β-Ala, X = Nle, Nle-9 = C-terminal amide)
Storage
Store at -20°C
InChI
InChI=1S/C57H76N14O11/c1-6-7-16-42(49(60)74)66-55(80)44(25-34-13-9-8-10-14-34)69-56(81)46(27-37-29-61-30-63-37)68-50(75)32(4)65-57(82)48(31(2)3)71-51(76)33(5)64-54(79)45(26-36-28-62-41-17-12-11-15-39(36)41)70-53(78)43(22-23-47(59)73)67-52(77)40(58)24-35-18-20-38(72)21-19-35/h8-15,17-21,28-33,40,42-46,48,62,72H,6-7,16,22-27,58H2,1-5H3,(H2,59,73)(H2,60,74)(H,61,63)(H,64,79)(H,65,82)(H,66,80)(H,67,77)(H,68,75)(H,69,81)(H,70,78)(H,71,76)/t32-,33-,40+,42-,43-,44-,45-,46-,48-/m0/s1
InChI Key
BXSSCSKCOFKPOK-ZWAOGYCRSA-N
Canonical SMILES
CCCCC(C(=O)N)NC(=O)C(CC1=CC=CC=C1)NC(=O)C(CC2=CN=CN2)NC(=O)C(C)NC(=O)C(C(C)C)NC(=O)C(C)NC(=O)C(CC3=CNC4=CC=CC=C43)NC(=O)C(CCC(=O)N)NC(=O)C(CC5=CC=C(C=C5)O)N
1. Antibody escape of SARS-CoV-2 Omicron BA.4 and BA.5 from vaccine and BA.1 serum
Aekkachai Tuekprakhon, et al. Cell. 2022 Jul 7;185(14):2422-2433.e13. doi: 10.1016/j.cell.2022.06.005. Epub 2022 Jun 9.
The Omicron lineage of SARS-CoV-2, which was first described in November 2021, spread rapidly to become globally dominant and has split into a number of sublineages. BA.1 dominated the initial wave but has been replaced by BA.2 in many countries. Recent sequencing from South Africa's Gauteng region uncovered two new sublineages, BA.4 and BA.5, which are taking over locally, driving a new wave. BA.4 and BA.5 contain identical spike sequences, and although closely related to BA.2, they contain further mutations in the receptor-binding domain of their spikes. Here, we study the neutralization of BA.4/5 using a range of vaccine and naturally immune serum and panels of monoclonal antibodies. BA.4/5 shows reduced neutralization by the serum from individuals vaccinated with triple doses of AstraZeneca or Pfizer vaccine compared with BA.1 and BA.2. Furthermore, using the serum from BA.1 vaccine breakthrough infections, there are, likewise, significant reductions in the neutralization of BA.4/5, raising the possibility of repeat Omicron infections.
2. Evolution of the SARS-CoV-2 omicron variants BA.1 to BA.5: Implications for immune escape and transmission
Lok Bahadur Shrestha, Charles Foster, William Rawlinson, Nicodemus Tedla, Rowena A Bull Rev Med Virol. 2022 Sep;32(5):e2381. doi: 10.1002/rmv.2381. Epub 2022 Jul 20.
The first dominant SARS-CoV-2 Omicron variant BA.1 harbours 35 mutations in its Spike protein from the original SARS-CoV-2 variant that emerged late 2019. Soon after its discovery, BA.1 rapidly emerged to become the dominant variant worldwide and has since evolved into several variants. Omicron is of major public health concern owing to its high infectivity and antibody evasion. This review article examines the theories that have been proposed on the evolution of Omicron including zoonotic spillage, infection in immunocompromised individuals and cryptic spread in the community without being diagnosed. Added to the complexity of Omicron's evolution are the multiple reports of recombination events occurring between co-circulating variants of Omicron with Delta and other variants such as XE. Current literature suggests that the combination of the novel mutations in Omicron has resulted in the variant having higher infectivity than the original Wuhan-Hu-1 and Delta variant. However, severity is believed to be less owing to the reduced syncytia formation and lower multiplication in the human lung tissue. Perhaps most challenging is that several studies indicate that the efficacy of the available vaccines have been reduced against Omicron variant (8-127 times reduction) as compared to the Wuhan-Hu-1 variant. The administration of booster vaccine, however, compensates with the reduction and improves the efficacy by 12-35 fold. Concerningly though, the broadly neutralising monoclonal antibodies, including those approved by FDA for therapeutic use against previous SARS-CoV-2 variants, are mostly ineffective against Omicron with the exception of Sotrovimab and recent reports suggest that the Omicron BA.2 is also resistant to Sotrovimab. Currently two new Omicron variants BA.4 and BA.5 are emerging and are reported to be more transmissible and resistant to immunity generated by previous variants including Omicron BA.1 and most monoclonal antibodies. As new variants of SARS-CoV-2 will likely continue to emerge it is important that the evolution, and biological consequences of new mutations, in existing variants be well understood.
3. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection
Yunlong Cao, et al. Nature. 2022 Aug;608(7923):593-602. doi: 10.1038/s41586-022-04980-y. Epub 2022 Jun 17.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineages BA.2.12.1, BA.4 and BA.5 exhibit higher transmissibility than the BA.2 lineage1. The receptor binding and immune-evasion capability of these recently emerged variants require immediate investigation. Here, coupled with structural comparisons of the spike proteins, we show that BA.2.12.1, BA.4 and BA.5 (BA.4 and BA.5 are hereafter referred collectively to as BA.4/BA.5) exhibit similar binding affinities to BA.2 for the angiotensin-converting enzyme 2 (ACE2) receptor. Of note, BA.2.12.1 and BA.4/BA.5 display increased evasion of neutralizing antibodies compared with BA.2 against plasma from triple-vaccinated individuals or from individuals who developed a BA.1 infection after vaccination. To delineate the underlying antibody-evasion mechanism, we determined the escape mutation profiles2, epitope distribution3 and Omicron-neutralization efficiency of 1,640 neutralizing antibodies directed against the receptor-binding domain of the viral spike protein, including 614 antibodies isolated from people who had recovered from BA.1 infection. BA.1 infection after vaccination predominantly recalls humoral immune memory directed against ancestral (hereafter referred to as wild-type (WT)) SARS-CoV-2 spike protein. The resulting elicited antibodies could neutralize both WT SARS-CoV-2 and BA.1 and are enriched on epitopes on spike that do not bind ACE2. However, most of these cross-reactive neutralizing antibodies are evaded by spike mutants L452Q, L452R and F486V. BA.1 infection can also induce new clones of BA.1-specific antibodies that potently neutralize BA.1. Nevertheless, these neutralizing antibodies are largely evaded by BA.2 and BA.4/BA.5 owing to D405N and F486V mutations, and react weakly to pre-Omicron variants, exhibiting narrow neutralization breadths. The therapeutic neutralizing antibodies bebtelovimab4 and cilgavimab5 can effectively neutralize BA.2.12.1 and BA.4/BA.5, whereas the S371F, D405N and R408S mutations undermine most broadly sarbecovirus-neutralizing antibodies. Together, our results indicate that Omicron may evolve mutations to evade the humoral immunity elicited by BA.1 infection, suggesting that BA.1-derived vaccine boosters may not achieve broad-spectrum protection against new Omicron variants.
Online Inquiry
Verification code
Inquiry Basket