1. Cloning and expression of synthetic genes encoding the broad antimicrobial spectrum bacteriocins SRCAM 602, OR-7, E-760, and L-1077, by recombinant Pichia pastoris
Sara Arbulu, Juan J Jiménez, Loreto Gútiez, Luis M Cintas, Carmen Herranz, Pablo E Hernández Biomed Res Int. 2015;2015:767183. doi: 10.1155/2015/767183. Epub 2015 Mar 2.
We have evaluated the cloning and functional expression of previously described broad antimicrobial spectrum bacteriocins SRCAM 602, OR-7, E-760, and L-1077, by recombinant Pichia pastoris. Synthetic genes, matching the codon usage of P. pastoris, were designed from the known mature amino acid sequence of these bacteriocins and cloned into the protein expression vector pPICZαA. The recombinant derived plasmids were linearized and transformed into competent P. pastoris X-33, and the presence of integrated plasmids into the transformed cells was confirmed by PCR and sequencing of the inserts. The antimicrobial activity, expected in supernatants of the recombinant P. pastoris producers, was purified using a multistep chromatographic procedure including ammonium sulfate precipitation, desalting by gel filtration, cation exchange-, hydrophobic interaction-, and reverse phase-chromatography (RP-FPLC). However, a measurable antimicrobial activity was only detected after the hydrophobic interaction and RP-FPLC steps of the purified supernatants. MALDI-TOF MS analysis of the antimicrobial fractions eluted from RP-FPLC revealed the existence of peptide fragments of lower and higher molecular mass than expected. MALDI-TOF/TOF MS analysis of selected peptides from eluted RP-FPLC samples with antimicrobial activity indicated the presence of peptide fragments not related to the amino acid sequence of the cloned bacteriocins.
2. Prevalence, development, and molecular mechanisms of bacteriocin resistance in Campylobacter
Ky Van Hoang, Norman J Stern, Arnold M Saxton, Fuzhou Xu, Ximin Zeng, Jun Lin Appl Environ Microbiol. 2011 Apr;77(7):2309-16. doi: 10.1128/AEM.02094-10. Epub 2011 Jan 28.
Bacteriocins (BCNs) are antimicrobial peptides produced by bacteria with narrow or broad spectra of antimicrobial activity. Recently, several unique anti-Campylobacter BCNs have been identified from commensal bacteria isolated from chicken intestines. These BCNs dramatically reduced C. jejuni colonization in poultry and are being directed toward on-farm control of Campylobacter. However, no information concerning prevalence, development, and mechanisms of BCN resistance in Campylobacter exists. In this study, susceptibilities of 137 C. jejuni isolates and 20 C. coli isolates to the anti-Campylobacter BCNs OR-7 and E-760 were examined. Only one C. coli strain displayed resistance to the BCNs (MIC, 64 μg/ml), while others were susceptible, with MICs ranging from 0.25 to 4 μg/ml. The C. coli mutants resistant to BCN OR-7 also were obtained by in vitro selection, but all displayed only low-level resistance to OR-7 (MIC, 8 to 16 μg/ml). The acquired BCN resistance in C. coli could be transferred at intra- and interspecies levels among Campylobacter strains by biphasic natural transformation. Genomic examination of the OR-7-resistant mutants by using DNA microarray and random transposon mutagenesis revealed that the multidrug efflux pump CmeABC contributes to both intrinsic resistance and acquired resistance to the BCNs. Altogether, this study represents the first report of and a major step forward in understanding BCN resistance in Campylobacter, which will facilitate the development of effective BCN-based strategies to reduce the Campylobacter loads in poultry.