1. The signature of long-standing balancing selection at the human defensin beta-1 promoter
Rachele Cagliani, Matteo Fumagalli, Stefania Riva, Uberto Pozzoli, Giacomo P Comi, Giorgia Menozzi, Nereo Bresolin, Manuela Sironi Genome Biol. 2008;9(9):R143. doi: 10.1186/gb-2008-9-9-r143. Epub 2008 Sep 25.
Background: Defensins, small endogenous peptides with antimicrobial activity, are pivotal components of the innate immune response. A large cluster of defensin genes is located on human chromosome 8p; among them the beta defensin 1 (DEFB1) promoterhas been extensively studied since discovery that specific polymorphisms and haplotypes associate with asthma and atopy, susceptibility to severe sepsis, as well as HIV and Candida infection predisposition. Results: Here, we characterize the sequence variation and haplotype structure of the DEFB1 promoter region in six human populations. In all of them, we observed high levels of nucleotide variation, an excess of intermediate-frequency alleles, reduced population differentiation and a genealogy with common haplotypes separated by deep branches. Indeed, a significant departure from the expectation of evolutionary neutrality was observed in all populations and the possibility that this is due to demographic history alone was ruled out. Also, we verified that the selection signature is restricted to the promoter region and not due to a linked balanced polymorphism. A phylogeny-based estimation indicated that the two major haplotype clades separated around 4.5 million years ago, approximately the time when the human and chimpanzee lineages split. Conclusion: Altogether, these features represent strong molecular signatures of long-term balancing selection, a process that is thought to be extremely rare outside major histocompatibility complex genes. Our data indicate that the DEFB1 promoter region carries functional variants and support previous hypotheses whereby alleles predisposing to atopic disorders are widespread in modern societies because they conferred resistance to pathogens in ancient settings.
2. A study of host defence peptide beta-defensin 3 in primates
Michele Boniotto, et al. Biochem J. 2003 Sep 15;374(Pt 3):707-14. doi: 10.1042/BJ20030528.
We have investigated the molecular evolution of the gene coding for beta-defensin 3 (DEFB103) in 17 primate species including humans. Unlike the DEFB4 genes (coding for beta-defensin 2) [Boniotto, Tossi, Del Pero, Sgubin, Antcheva, Santon and Masters (2003) Genes Immun. 4, 251-257], DEFB103 shows a marked degree of conservation in humans, Great Apes and New and Old World monkeys. Only the Hylobates concolor defensin hcBD3 showed an amino acid variation Arg17-->Trp17 that could have a functional implication, as it disrupts an intramolecular salt bridge with Glu27, which locally decreases the charge and may favour dimerization in the human congener hBD3. This is thought to involve the formation of an intermolecular salt bridge between Glu28 and Lys32 on another monomer [Schibli, Hunter, Aseyev, Starner, Wiencek, McCray, Tack and Vogel (2002) J. Biol. Chem. 277, 8279-8289]. To test the role of dimerization in mediating biological activity, we synthesized hBD3, hcBD3 and an artificial peptide in which the Lys26-Glu27-Glu28 stretch was replaced by the equivalent Phe-Thr-Lys stretch from human beta-defensin 1 and we characterized their structure and anti-microbial activity. Although the structuring and dimerization of these peptides were found to differ significantly, this did not appear to affect markedly the anti-microbial potency, the broad spectrum of activity or the insensitivity of the anti-microbial action to the salinity of the medium.
3. Rhesus macaque theta defensins suppress inflammatory cytokines and enhance survival in mouse models of bacteremic sepsis
Justin B Schaal, et al. PLoS One. 2012;7(12):e51337. doi: 10.1371/journal.pone.0051337. Epub 2012 Dec 6.
Theta-defensins (θ-defensins) are macrocyclic antimicrobial peptides expressed in leukocytes of Old World monkeys. The peptides are broad spectrum microbicides in vitro and numerous θ-defensin isoforms have been identified in granulocytes of rhesus macaques and Olive baboons. Several mammalian α- and β-defensins, genetically related to θ-defensins, have proinflammatory and immune-activating properties that bridge innate and acquired immunity. In the current study we analyzed the immunoregulatory properties of rhesus θ-defensins 1-5 (RTDs 1-5). RTD-1, the most abundant θ-defensin in macaques, reduced the levels of TNF, IL-1α, IL-1β, IL-6, and IL-8 secreted by blood leukocytes stimulated by several TLR agonists. RTDs 1-5 suppressed levels of soluble TNF released by bacteria- or LPS-stimulated blood leukocytes and THP-1 monocytes. Despite their highly conserved conformation and amino acid sequences, the anti-TNF activities of RTDs 1-5 varied by as much as 10-fold. Systemically administered RTD-1 was non-toxic for BALB/c mice, and escalating intravenous doses were well tolerated and non-immunogenic in adult chimpanzees. The peptide was highly stable in serum and plasma. Single dose administration of RTD-1 at 5 mg/kg significantly improved survival of BALB/c mice with E. coli peritonitis and cecal ligation-and-puncture induced polymicrobial sepsis. Peptide treatment reduced serum levels of several inflammatory cytokines/chemokines in bacteremic animals. Collectively, these results indicate that the anti-inflammatory properties of θ-defensins in vitro and in vivo are mediated by the suppression of numerous proinflammatory cytokines and blockade of TNF release may be a primary effect.