1. Differential Processing of {alpha}- and {beta}-Defensin Precursors by Matrix Metalloproteinase-7 (MMP-7)
Carole L Wilson, Amy P Schmidt, Emma Pirilä, Erika V Valore, Nicola Ferri, Timo Sorsa, Tomas Ganz, William C Parks J Biol Chem. 2009 Mar 27;284(13):8301-11. doi: 10.1074/jbc.M809744200. Epub 2009 Jan 30.
Proteolytic processing of defensins is a critical mode of posttranslational regulation of peptide activity. Because mouse alpha-defensin precursors are cleaved and activated by matrix metalloproteinase-7 (MMP-7), we determined if additional defensin molecules, namely human neutrophil defensin pro-HNP-1 and beta-defensins, are targets for MMP-7. We found that MMP-7 cleaves within the pro-domain of the HNP-1 precursor, a reaction that does not generate the mature peptide but produces a 59-amino acid intermediate. This intermediate, which retains the carboxyl-terminal end of the pro-domain, had antimicrobial activity, indicating that the residues important for masking defensin activity reside in the amino terminus of this domain. Mature HNP-1 was resistant to processing by MMP-7 unless the peptide was reduced and alkylated, demonstrating that only the pro-domain of alpha-defensins is normally accessible for cleavage by this enzyme. From the 47-residue HBD-1 precursor, MMP-7 catalyzed removal of 6 amino acids from the amino terminus. Neither a 39-residue intermediate form of HBD-1 nor the mature 36-residue form of HBD-1 was cleaved by MMP-7. In addition, both pro-HBD-2, with its shorter amino-terminal extension, and pro-HBD-3 were resistant to MMP-7. However, human and mouse beta-defensin precursors that lack disulfide bonding contain a cryptic MMP-7-sensitive site within the mature peptide moiety. These findings support and extend accumulating evidence that the native three-dimensional structure of both alpha- and beta-defensins protects the mature peptides against proteolytic processing by MMP-7. We also conclude that sites for MMP-7 cleavage are more common at the amino termini of alpha-defensin rather than beta-defensin precursors, and that catalysis at these sites in alpha-defensin pro-domains results in acquisition of defensin activity.
2. Investigation of serum β-defensin-1 level in calves with coccidiosis
Akın Koçhan J Adv Vet Anim Res. 2021 Sep 20;8(3):494-500. doi: 10.5455/javar.2021.h539. eCollection 2021 Sep.
Objective: Coccidiosis is a protozoan infection that can result in hemorrhagic diarrhea, depression, weakness, weight loss, and even mortality in young animals. β-defensin-1 is an antimicrobial peptide produced largely by epithelial cells in the skin and mucosa. It possesses antifungal, antibacterial, antiparasitic, and antiviral properties. The goal of this study was to evaluate how β-defensin-1 levels changed in coccidiosis-infected calves. Materials and methods: The sample included 10 coccidiosis-positive calves and 7 healthy calves, for a total of 17 calves of diverse breeds and older than 15 days. To assess the level of β-defensin-1, blood samples were obtained from the vena jugularis of the animals. The concentrations of β-defensin-1 in the serum were measured using a commercial ELISA kit. Results: Although the serum β-defensin-1 level decreased in infected animals, the drop was not statistically significant when compared to the control group. Conclusion: According to the study's findings, there was no significant change in the serum β-defensin-1 level in coccidiosis-infected calves. We believe that it will be advantageous to conduct additional studies with a larger sample size in order to acquire more precise results.
3. The truncated human beta-defensin 118 can modulate lipopolysaccharide mediated inflammatory response in RAW264.7 macrophages
Jing Hou, Hai-Yan Liu, Hua Diao, Heguo Yu Peptides. 2021 Feb;136:170438. doi: 10.1016/j.peptides.2020.170438. Epub 2020 Nov 10.
The family of human β-defensins consists of small cysteine-rich peptides, which are receiving significant attention due to their antimicrobial activity. The N-terminal cysteine motif of β-defensin is considered to contribute to its biological activity. Human β-defensin 118 (DEFB 118) is a particular anion β-defensin expressed predominantly in the male reproductive tract, but its physiological activity has not yet been revealed. In order to verify the potential role of the N-terminal domain of DEFB118 peptide in the regulation of infection, the truncated β-defensin core region of DEFB118 peptide was expressed with IMPACT-pTWIN1 system in Escherichia coli. Herein, the purified homogeneous DEFB118 peptide was identified by mass spectrometry and circular dichroism spectroscopy. The in vitro experiments revealed that DEFB118 peptide exhibited prominent LPS-binding potency (KD: 2.94 nM). Moreover, the DEFB118 core peptide significantly inhibited the mRNA level of LPS-induced inflammatory cytokines including IL-α, IL-1β, IL-6 and TNF-α in RAW264.7 cells, and correspondingly decreased secretion of IL-6 and TNF-α. We concluded that strong binding of DEFB118 to LPS might prevent LPS from binding to its receptor, and hence inhibited cytokines secretion. The results of this study may be a benefit to elucidate the immune protection of DEFB118 in the male reproductive tract.