BIM-23627
Need Assistance?
  • US & Canada:
    +
  • UK: +

BIM-23627

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

BIM 23627 is a somatostatin antagonist with IC50s of 2757, 6.4, 44, 423 and 86.5 nM for five human somatostatin receptor subtypes HSST1, HSST2, HSST3, HSST4 and HSST5, respectively. It selectively binds to human somatostatin receptor subtype 2 (HSST2) with high affinity, but is completely inactive in stimulating intracellular calcium mobilization.

Category
Peptide Inhibitors
Catalog number
BAT-014514
CAS number
429619-37-4
Molecular Formula
C58H69ClN12O8S2
Molecular Weight
1161.85
IUPAC Name
(2S)-6-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2R)-2-amino-3-(4-chlorophenyl)propanoyl]amino]-3-sulfanylpropanoyl]amino]-3-pyridin-3-ylpropanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-N-[(2S)-1-[[(2R)-1-[[(2S)-1-amino-3-naphthalen-2-yl-1-oxopropan-2-yl]amino]-1-oxo-3-sulfanylpropan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]hexanamide;2,2,2-trifluoroacetic acid
Synonyms
H-p-Chloro-Phe-D-Cys-β-(2-pyridyl)-Ala-Trp-Lys-Val-Cys-2-Nal-NH2 (Disulfide bridge: Cys2 and Cys7)
Appearance
Off-white Powder
Purity
≥90%
Storage
Store at -20°C
Solubility
Soluble in Water
InChI
InChI=1S/C58H71ClN12O8S2.C2HF3O2/c1-33(2)50(58(79)70-49(32-81)56(77)66-45(51(62)72)26-35-16-19-37-11-3-4-12-38(37)24-35)71-53(74)44(15-7-8-22-60)65-55(76)47(28-39-30-64-43-14-6-5-13-41(39)43)68-54(75)46(27-36-10-9-23-63-29-36)67-57(78)48(31-80)69-52(73)42(61)25-34-17-20-40(59)21-18-34;3-2(4,5)1(6)7/h3-6,9-14,16-21,23-24,29-30,33,42,44-50,64,80-81H,7-8,15,22,25-28,31-32,60-61H2,1-2H3,(H2,62,72)(H,65,76)(H,66,77)(H,67,78)(H,68,75)(H,69,73)(H,70,79)(H,71,74);(H,6,7)/t42-,44+,45+,46+,47+,48-,49+,50+;/m1./s1
InChI Key
BZGBKPNRQBRNEX-KBAFCKHGSA-N
Canonical SMILES
CC(C)C(C(=O)NC(CS)C(=O)NC(CC1=CC2=CC=CC=C2C=C1)C(=O)N)NC(=O)C(CCCCN)NC(=O)C(CC3=CNC4=CC=CC=C43)NC(=O)C(CC5=CN=CC=C5)NC(=O)C(CS)NC(=O)C(CC6=CC=C(C=C6)Cl)N.C(=O)(C(F)(F)F)O
1. The somatostatin subtype-2 receptor antagonist, BIM-23627, improves the catabolic effects induced by long-term glucocorticoid treatment in the rat
Giovanni Tulipano, Elena Rossi, Michael D Culler, John E Taylor, Stefania Bonadonna, Vittorio Locatelli, Daniela Cocchi, Andrea Giustina Regul Pept. 2005 Feb 15;125(1-3):85-92. doi: 10.1016/j.regpep.2004.07.027.
BIM-23627 is a synthetic peptide with "in vitro" and "in vivo" properties consistent with a pure sst2 antagonist. The aim of the present study was to evaluate the effects of long-term administration of BIM-23627 and the combined effects of BIM-23627 and dexamethasone (DEX) on the somatotropic axis, including growth, epididymal fat accumulation, glucose homeostasis and insulin activity, in young male rats. Beginning on day 23 of age, 16 animals were treated daily with saline or DEX (40 microg/kg/daily). Each group was subdivided into two paired groups and treated with either vehicle or BIM-23627 (0.5 mg/kg, t.i.d.). The treatment period lasted 31 days. The animals were killed by decapitation; trunk blood and pituitaries were collected for the determination of hormone concentrations and GH mRNA expression, respectively. Based on plasma GH and IGF-I concentrations and GH mRNA expression in the pituitary, BIM-23627 was able to counteract the inhibitory effects of DEX on the somatotropic axis; however, only a partial reversal of somatic growth inhibition was observed. DEX-treated rats remained euglycemic, but their insulin levels were significantly increased, indicating an incipient insulin resistance. Although BIM-23627 itself tended to increase insulin concentration in saline-treated rats, its administration to DEX-treated rats reduced insulin levels (saline: 25+/-3; DEX: 55+/-16*; DEX+BIM-23627: 34+/-5; BIM-23627: 38+/-7 microIU/ml; *P<0.05 vs. saline), apparently improving the degree of insulin sensitivity. DEX administration significantly reduced circulating ghrelin, whereas the sst2 antagonist had no significant effect. An inverse correlation was found between ghrelin concentrations and plasma insulin levels. Both rats receiving DEX and rats receiving BIM-23627 had decreased plasma concentration of total testosterone (P<0.05); however, the effects of DEX and BIM-23627 were not additive. In conclusion, BIM-23627 may represent a new pharmacological agent to reduce the suppression of the GH-IGF-I axis in long-term GC treated patients and enhance insulin sensitivity. Further studies are required in order to fully optimize the SSTR-2 antagonist-induced reversal of DEX-induced somatic growth inhibition.
2. Characterization of new selective somatostatin receptor subtype-2 (sst2) antagonists, BIM-23627 and BIM-23454. Effects of BIM-23627 on GH release in anesthetized male rats after short-term high-dose dexamethasone treatment
G Tulipano, D Soldi, M Bagnasco, M D Culler, J E Taylor, D Cocchi, A Giustina Endocrinology. 2002 Apr;143(4):1218-24. doi: 10.1210/endo.143.4.8716.
We here report a pharmacological characterization of two new somatostatin (SS) receptor subtype-2 (sst2) selective antagonists by evaluating their GH-releasing activity when administered, by different routes, in anesthetized adult rats and in freely moving 10-d-old rats. Moreover, we describe the effect of these SS antagonists on the GH response to GHRH after short-term high-dose dexamethasone (DEX) treatment in young male rats. BIM-23454 and BIM-23627, given iv, were able to counteract the SS-induced inhibition of GH secretion occurring after urethane anesthesia in a dose-dependent manner. In DEX-treated animals, the GH response to GHRH was partially blunted (5-min peak values, 270 +/- 50 ng/ml in saline-treated vs. 160 +/- 10 ng/ml in DEX-treated, P < 0.05); however, the simultaneous administration of BIM-23627 (0.2 mg/kg, iv) restored higher amplitude GH pulse, leading to a significantly higher overall mean GH response (area under the curve, 4200 +/- 120 ng/ml/30 min vs. 2800 +/- 100 ng/ml/30 min after GHRH alone; P < 0.05). The SS antagonists showed a reduced GH-releasing effect when administered sc or ip, likely attributable to decreased bioavailability, as compared with the iv route. SS antagonist administration also increased plasma glucagon, insulin, and glucose levels. Based on prior reports that sst2 tonically suppresses glucagon secretion, the antagonist most likely increased glucagon secretion from the pancreatic alpha-cells, with resultant increases in plasma glucose and then insulin.
3. Kit ligand and the somatostatin receptor antagonist, BIM-23627, stimulate in vitro resting follicle growth in the neonatal mouse ovary
Alain Gougeon, Aurélien Delangle, Nassim Arouche, Mats Stridsberg, Jean Pierre Gotteland, Ernest Loumaye Endocrinology. 2010 Mar;151(3):1299-309. doi: 10.1210/en.2009-0762. Epub 2010 Jan 7.
In the mammalian ovary, kit ligand (KL), coded by a cAMP-stimulatable gene, is a protein that promotes initiation of follicle growth. The neuropeptide somatostatin (SST) is a small peptide that inhibits cAMP generation in many cell types. Consequently, SST receptor agonists might alter KL production and subsequent follicle growth. The present study was undertaken to look for the existence of a functional SST system in the mouse ovary, to test the effects of the SST receptor 2 (SSTR-2) antagonist BIM-23627 on in vitro folliculogenesis, and to compare them with those of KL, which was demonstrated to stimulate follicle growth in the neonatal rat ovary. Pairs of ovaries from 5-d-old mice were incubated in vitro during 15 d in the presence of either KL or BIM-23627. For every mouse, one ovary was cultured in culture medium (control), and the other ovary was cultured in the presence of either KL or BIM-23627. After 5, 10, and 15 d culture, the ovaries were histologically assessed for the content of primordial, primary, and secondary follicles. The SSTR-2 and -5, but not SST, were identified at the transcriptional and translational (mainly in granulosa cells) levels. Both KL and BIM-23627 triggered a reduction of the percentages of primordial follicles and an increase of the percentages of primary and secondary follicles when compared with control ovaries from the same animal. In conclusion, extraovarian SST, acting through its receptors 2 and 5 present on granulosa cells, may be involved in mouse folliculogenesis by reducing recruitment of resting follicles.
Online Inquiry
Verification code
Inquiry Basket