1.Toward mechanistic elucidation of iron acquisition in barley: efficient synthesis of mugineic acids and their transport activities
Chem Rec. 2010 Apr;10(2):140-50. doi: 10.1002/tcr.200900028.
Iron acquisition of graminaceous plants is characterized by the synthesis and secretion of iron-chelating compounds, mugineic acids (MAs), and by a specific uptake system for MAs-iron(III) complexes. We identified a transporter, HvYS1 (Hordeum vulgare L. yellow stripe 1), that is highly specific for MAs-iron(III) in barley roots. In this article we outline the characterization of HvYS1, and our recent work on the practical syntheses of MAs and investigations into the molecular basis of the specific transport of their iron(III) complexes by HvYS1. 2'-Deoxymugineic acid (DMA) was synthesized in a good overall yield from commercially available Boc-l-allylglycine using a minimal number of short simple operations with minimal protecting groups and work-up/purification procedures. The same strategy was also successfully applied to beta-hydroxy-l-allylglycine, which was obtained by an allylic oxidation of l-allylglycine derivatives, to give MA and 2'-epi-MA efficiently. HvYS1 transported the iron(III) complexes of all three synthetic specimens with efficiency similar to that of a natural mugineic acid complex. With sufficient quantities of MAs in hand, we analyzed the function of HvYS1 and revealed by preparing chimeric transporters that the sixth outer membrane loop of the transporter plays a vital role in substrate specificity.
2.Synthesis of both enantiomers of hydroxypipecolic acid derivatives equivalent to 5-azapyranuronic acids and evaluation of their inhibitory activities against glycosidases
Bioorg Med Chem. 2008 Sep 1;16(17):8273-86. doi: 10.1016/j.bmc.2008.06.016.
We have synthesized 3-hydroxy- and 3,4,5-trihydroxypipecolic acid derivatives corresponding to 5-aza derivatives of uronic acids and evaluated their inhibitory activities against various glycosidases including beta-glucuronidase. Compounds 4 and 5 were chosen as common intermediates for the synthesis of 3,4,5-trihydroxypipecolic acids and 3-hydroxypipecolic acids as well as for 3-hydroxybaikiain, a unique natural product isolated from a toxic mushroom. Cross aldol reaction of N-Boc-allylglycine derivative with acrolein followed by the ring-closing metathesis gave 4 and 5 as a mixture of diastereomers which could be separated by silica gel column chromatography. By employing lipase-catalyzed kinetic resolution, the synthesis of both L- and D-isomers of 3,4,5-trihydroxy- and 3-hydroxypipecolic acids was achieved. None of the compounds tested showed inhibitory activity against alpha- and beta-glucosidases. On the other hand, L-23 and L-29 were found to have potent inhibitory activity against beta-glucuronidase. In addition, it is interesting that some uronic-type azasugar derivatives showed moderate inhibitory activities against beta-N-acetylglucosaminidase.