1.The development of a new class of inhibitors for betaine-homocysteine S-methyltransferase.
Pícha J1, Vaněk V, Buděšínský M, Mládková J, Garrow TA, Jiráček J. Eur J Med Chem. 2013 Jul;65:256-75. doi: 10.1016/j.ejmech.2013.04.039. Epub 2013 Apr 30.
Betaine-homocysteine S-methyltransferase (BHMT) is an important zinc-dependent methyltransferase that uses betaine as the methyl donor for the remethylation of homocysteine to form methionine. In the liver, BHMT performs to half of the homocysteine remethylation. In this study, we systematically investigated the tolerance of the enzyme for modifications at the "homocysteine" part of the previously reported potent inhibitor (R,S)-5-(3-amino-3-carboxy-propylsulfanyl)-pentanoic acid (1). In the new compounds, which are S-alkylated homocysteine derivatives, we replaced the carboxylic group in the "homocysteine" part of inhibitor 1 with different isosteric moieties (tetrazole and oxadiazolone); we suppressed the carboxylic negative charge by amidations; we enhanced acidity by replacing the carboxylate with phosphonic or phosphinic acids; and we introduced pyrrolidine steric constraints. Some of these compounds display high affinity toward human BHMT and may be useful for further pharmacological studies of this enzyme.
2.Total syntheses of pamamycin 607 and methyl nonactate: stereoselective cyclisation of homoallylic alcohols that had been prepared with remote stereocontrol using allylstannanes.
Germay O1, Kumar N, Moore CG, Thomas EJ. Org Biomol Chem. 2012 Dec 28;10(48):9709-33. doi: 10.1039/c2ob26801a. Epub 2012 Nov 15.
The tin(IV) chloride mediated cyclisation of (Z)-homoallylic alcohols using phenylselenenyl chloride or phthalimide in the presence of a Lewis acid followed by reductive removal of the phenylselenenyl group was found to give 2,5-cis-disubstituted tetrahydrofurans with excellent stereocontrol. Using this procedure, (2S,4S,8R,6Z)-9-benzyloxy-2-tert-butyldiphenylsilyloxy-8-methylnon-6-en-4-ol (11), prepared stereoselectively via the tin(iv) chloride promoted reaction between the (R)-5-benzyloxy-4-methylpent-2-enyl(tributyl)stannane (3) and (S)-3-tert-butyldiphenylsilyloxybutanal (10), gave (2S,3R,6S,8S)-1-benzyloxy-8-tert-butyldiphenylsilyloxy-3,6-epoxy-2-methylnonane (13) after deselenation. This tetrahydrofuran was selectively deprotected, oxidized and esterified to give methyl nonactate (2). Having established this synthesis of 2,5-cis-disubstituted tetrahydrofurans, it was applied to complete a synthesis of pamamycin 607 (1). (2S,3R,6S,8R)-1-Benzyloxy-8-[N-methyl-N-(toluene-4-sulfonyl)amino]-3,6-epoxy-2-methylundecane (35) was prepared stereoselectively from (R)-3-[N-(toluene-4-sulfonyl)-N-methylamino]hexanal (32) by reaction with the stannane 3 followed by cyclisation of the resulting alkenol 33 and deselenation.
3.Gel sculpture: moldable, load-bearing and self-healing non-polymeric supramolecular gel derived from a simple organic salt.
Sahoo P1, Sankolli R, Lee HY, Raghavan SR, Dastidar P. Chemistry. 2012 Jun 25;18(26):8057-63. doi: 10.1002/chem.201200986. Epub 2012 May 24.
An easy access to a library of simple organic salts derived from tert-butoxycarbonyl (Boc)-protected L-amino acids and two secondary amines (dicyclohexyl- and dibenzyl amine) are synthesized following a supramolecular synthon rationale to generate a new series of low molecular weight gelators (LMWGs). Out of the 12 salts that we prepared, the nitrobenzene gel of dicyclohexylammonium Boc-glycinate (GLY.1) displayed remarkable load-bearing, moldable and self-healing properties. These remarkable properties displayed by GLY.1 and the inability to display such properties by its dibenzylammonium counterpart (GLY.2) were explained using microscopic and rheological data. Single crystal structures of eight salts displayed the presence of a 1D hydrogen-bonded network (HBN) that is believed to be important in gelation. Powder X-ray diffraction in combination with the single crystal X-ray structure of GLY.1 clearly established the presence of a 1D hydrogen-bonded network in the xerogel of the nitrobenzene gel of GLY.
4.Identification of amino acid and glutathione N-conjugates of toosendanin: bioactivation of the furan ring mediated by CYP3A4.
Yu J1, Deng P, Zhong D, Chen X. Chem Res Toxicol. 2014 Sep 15;27(9):1598-609. doi: 10.1021/tx5002145. Epub 2014 Aug 19.
Toosendanin (TSN) is a hepatotoxic triterpenoid extracted from Melia toosendan Sieb et Zucc. Considering that TSN contains the structural alert of the furan ring, it is believed that bioactivation of TSN may be responsible for its toxicity. Herein, the bioactivation potential and metabolism profiles of TSN were investigated. After an oral administration of 10 mg/kg TSN to rats, esterolysis and conjugation with amino acids were identified as the main metabolic pathways. The same types of conjugates were detected in liver microsomes in an NADPH-dependent manner. According to the remaining amount of the parent drug, the reactivity of trapping reagents with TSN reactive metabolites was sorted in a decreasing order of N(α)-(tert-butoxycarbonyl)-l-lysine (Boc-Lys) > alanine, lysine, taurine, phenylalanine, serine, glutamic acid, glycine, and glutathione (GSH) > cysteine. No conjugates were observed in NADPH and N-acetyl cysteine (NAC)-supplemented human liver microsomal incubations.