1. Vinegar intake reduces body weight, body fat mass, and serum triglyceride levels in obese Japanese subjects
Tomoo Kondo, Mikiya Kishi, Takashi Fushimi, Shinobu Ugajin, Takayuki Kaga Biosci Biotechnol Biochem. 2009 Aug;73(8):1837-43. doi: 10.1271/bbb.90231. Epub 2009 Aug 7.
Acetic acid (AcOH), a main component of vinegar, recently was found to suppress body fat accumulation in animal studies. Hence we investigated the effects of vinegar intake on the reduction of body fat mass in obese Japanese in a double-blind trial. The subjects were randomly assigned to three groups of similar body weight, body mass index (BMI), and waist circumference. During the 12-week treatment period, the subjects in each group ingested 500 ml daily of a beverage containing either 15 ml of vinegar (750 mg AcOH), 30 ml of vinegar (1,500 mg AcOH), or 0 ml of vinegar (0 mg AcOH, placebo). Body weight, BMI, visceral fat area, waist circumference, and serum triglyceride levels were significantly lower in both vinegar intake groups than in the placebo group. In conclusion, daily intake of vinegar might be useful in the prevention of metabolic syndrome by reducing obesity.
2. Synthesis of Spiro1,4-Dihydropyridines: A Review
Zahra Sadri, Farahnaz K Behbahani Curr Org Synth. 2020;17(5):324-343. doi: 10.2174/1570179417666200415150027.
The preparation of medicinally promising spiro1,4-dihydropyridines accompanied by their applications in biological and pharmaceutical activities is presented. Spiro1,4-dihydropyridines were synthesized using numerous reported methods including bronested acids such as p-TSA, AcOH, nano-ranged calix[4]arene tetracarboxylic acid, sulfamic acid, PEG-OSO3H, tetramethylguanidinium triflate; lewis acids including Zn(OTf)2, FeCl3, copper, alum, aluminosilicate nanoparticles, MnFe2O4 nanoparticles, manganese ferrite nanoparticles, BF3OEt2; under alkaline conditions such as Et3N and piperidine; ionic liquids such as [KAl(SO4)2·12H2O] and [Bmim]PF6, [MIM(CH2)4SO3H][HSO4]; and other miscellaneous procedures, for example, microwave-assisted catalyst and solvent-free conditions, using iodine, PEG-400, and NaCl.
3. Analysis of the Anti-Inflammatory Capacity of Bone Broth in a Murine Model of Ulcerative Colitis
Laura M Mar-Solís, et al. Medicina (Kaunas). 2021 Oct 20;57(11):1138. doi: 10.3390/medicina57111138.
Background and Objectives: Nutritional deficiencies are one of the main triggers for the development of gastrointestinal diseases, such as ulcerative colitis (UC). Therefore, the objective of the present work consisted of determining the nutrients present in the bone broth (BB) and evaluating their anti-inflammatory properties in a murine model of UC, induced by intrarectal administration of 2, 4, 6-trinitrobenzene sulfonic acid (TNBS), and acetic acid (AcOH). The BB was prepared from the femur of bovine cattle and cooked in distilled water for 8 h at 100 ± 2 °C. Materials and Methods: The BB was administered ad libitum to BALB/c mice for 10 days before the induction of UC. Colon samples were collected for histological analysis and determination of cytokine expression levels by qPCR. Results: It was found that amino acids (AA) are the main nutritional contribution of BB, 54.56% of these correspond to essential AA. The prophylactic administration of BB in the murine model of UC reduced histological damage, decreased the expression of IL-1β (61.12%), IL-6 (94.70%), and TNF-α (68.88%), and increased the expression of INF-γ (177.06%), IL-4 (541.36%), and IL-10 (531.97%). Conclusions: This study shows that BB has anti-inflammatory properties, and its consumption can decrease the symptoms of UC.