Boc-S-ethyl-L-cysteine
Need Assistance?
  • US & Canada:
    +
  • UK: +

Boc-S-ethyl-L-cysteine

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
BOC-Amino Acids
Catalog number
BAT-002895
CAS number
16947-82-3
Molecular Formula
C10H19NO4S
Molecular Weight
249.30
Boc-S-ethyl-L-cysteine
IUPAC Name
(2R)-3-ethylsulfanyl-2-[(2-methylpropan-2-yl)oxycarbonylamino]propanoic acid
Synonyms
Boc-L-Cys(Et)-OH; (R)-2-((tert-Butoxycarbonyl)amino)-3-(ethylthio)propanoic acid
Purity
≥ 98% (HPLC)
Density
1.160±0.06 g/cm3(Predicted)
Melting Point
55-60º C
Boiling Point
400.3±40.0 °C(Predicted)
Storage
Store at 2-8°C
InChI
InChI=1S/C10H19NO4S/c1-5-16-6-7(8(12)13)11-9(14)15-10(2,3)4/h7H,5-6H2,1-4H3,(H,11,14)(H,12,13)/t7-/m0/s1
InChI Key
IBCCMMVPGKVLAX-ZETCQYMHSA-N
Canonical SMILES
CCSCC(C(=O)O)NC(=O)OC(C)(C)C

Boc-S-ethyl-L-cysteine, a chemical compound integral to diverse research and industrial processes, finds application across various domains. Here are four key applications creatively:

Peptide Synthesis: Acting as a fundamental unit in peptide synthesis, Boc-S-ethyl-L-cysteine assumes a crucial role in constructing peptide chains with precision. The Boc protective group shields the amino acid, warding off undesired reactions throughout the synthesis process, ultimately enabling the meticulous assembly of peptides essential for advancing drug discovery and biochemical exploration.

Enzyme Studies: Delving into enzyme kinetics and mechanisms, Boc-S-ethyl-L-cysteine emerges as a versatile tool for researchers. By integrating this compound into enzyme substrates or blockers, scientists unravel the intricate involvement of cysteine residues in enzymatic reactions, shedding light on enzyme functionality and facilitating the creation of tailored inhibitors for therapeutic interventions.

Proteomics: Within the realm of proteomics, Boc-S-ethyl-L-cysteine serves as a pivotal element in labeling and scrutinizing cysteine-rich proteins. The ethyl group imparts enhanced stability, enabling precise examination of protein structures and functions. This application plays a critical role in elucidating protein modifications and interactions within complex biological samples, paving the path for breakthrough discoveries.

Drug Development: Positioned as a key intermediate in pharmaceutical synthesis, Boc-S-ethyl-L-cysteine contributes significantly to the creation of novel drug entities. Its reactivity and protective attributes make it an ideal candidate for crafting complex pharmaceutical molecules. This compound facilitates the development of innovative therapeutics by offering versatility in the realm of synthetic organic chemistry, driving forward the frontier of medicinal innovation.

1. Inhibition of N-methyl-D-aspartate receptors increases paraoxon-induced apoptosis in cultured neurons
Xuan Wu, Feng Tian, Peter Okagaki, Ann M Marini Toxicol Appl Pharmacol. 2005 Oct 1;208(1):57-67. doi: 10.1016/j.taap.2005.01.018.
Organophosphorus (OP) compounds, used as insecticides and chemical warfare agents, are potent neurotoxins. We examined the neurotoxic effect of paraoxon (O,O-diethyl O-p-nitrophenyl phosphate), an organophosphate compound, and the role of NMDA receptors as a mechanism of action in cultured cerebellar granule cells. Paraoxon is neurotoxic to cultured rat cerebellar granule cells in a time- and concentration-dependent manner. Cerebellar granule cells are less sensitive to the neurotoxic effects of paraoxon on day in vitro (DIV) 4 than neurons treated on DIV 8. Surprisingly, the N-methyl-D-aspartate (NMDA) receptor antagonist, MK-801, enhances paraoxon-mediated neurotoxicity suggesting that NMDA receptors may play a protective role. Pretreatment with a subtoxic concentration of N-methyl-D-aspartate (NMDA) [100 microM] protects about 40% of the vulnerable neurons that would otherwise die from paraoxon-induced neurotoxicity. Moreover, addition of a neuroprotective concentration of NMDA 3 h after treatment with paraoxon provides the same level of protection. Because paraoxon-mediated neuronal cell death is time-dependent, we hypothesized that apoptosis may be involved. Paraoxon increases apoptosis about 10-fold compared to basal levels. The broad-spectrum caspase inhibitor (Boc-D-FMK) and the caspase-9-specific inhibitor (Z-LEHD-FMK) protect against paraoxon-mediated apoptosis, paraoxon-stimulated caspase-3 activity and neuronal cell death. MK-801 increases, whereas NMDA blocks paraoxon-induced apoptosis and paraoxon-stimulated caspase-3 activity. These results suggest that activation of NMDA receptors protect neurons against paraoxon-induced neurotoxicity by blocking apoptosis initiated by paraoxon.
2. Investigation of the coordination interactions of S-(pyridin-2-ylmethyl)-L-cysteine ligands with M(CO)(3)(+) (M = Re, (99m)Tc)
Haiyang He, Jennifer E Morley, Brendan Twamley, Ryan H Groeneman, Dejan-Kresimir Bucar, Leonard R MacGillivray, Paul D Benny Inorg Chem. 2009 Nov 16;48(22):10625-34. doi: 10.1021/ic901159r.
Development of new ligands for fac-M(OH(2))(3)(CO)(3)(+) (M = Re, (99m)Tc) led the investigation with S-(pyridin-2-ylmethyl)-l-cysteine, 1. The ligand 1 has potential to coordinate with the metal through three different tridentate modes: tripodal through cysteine (O,N,S) and two linear involving the S-pyridyl and cysteine (O,S,N(Py), N,S,N(Py)). From the reaction with 1, two species were observed in the (1)H NMR, where the primary product was the linear fac-Re(N,S,N(Py)-1)(CO)(3)(+), 2a, complex. To identify the coordination mode of the minor product, functionalized analogues of 1 were prepared from S-(pyridin-2-ylmethyl)-Boc-l-cysteine-methyl ester, 3, with orthogonal protecting groups on the C terminus (methyl ester) in S-(pyridin-2-ylmethyl)-l-cysteine methyl ester, 4, or N terminus (Boc) in S-(pyridin-2-ylmethyl)-Boc-l-cysteine, 6, that specifically directed the coordination mode of fac-M(H(2)O)(3)(CO)(3)(+) to either N,S,N(Py) or O,S,N(Py), respectively. Two diastereomers [fac-Re(CO)(3)(N,S,N(Py)-4)](+), 5a and 5b, were observed and independently characterized by X-ray structure analysis and NMR in high yield with 4. Surprisingly, the O,S,N(Py) Re complex with ligand 6 was not observed and simplified versions, 3-(pyridin-2-ylmethylthio) propanoic acid, 7, and 2-(pyridin-2-ylmethylthio)acetic acid, 8, were investigated. Ligand 7 did not yield the desired linear tridentate O,S,N(Py) product. However, the shorter ligand 8 formed fac-Re(CO)(3)(O,S,N(Py)-8), 9, in high yield. (99m)Tc labeling studies were conducted and yielded similar results to the rhenium complex and effective (>99%) at 10(-5) M ligand concentration.
3. Half-sandwich complexes of iridium and ruthenium containing cysteine-derived ligands
María Carmona, Ricardo Rodríguez, Fernando J Lahoz, Pilar García-Orduña, Carlos Cativiela, José A López, Daniel Carmona Dalton Trans. 2017 Jan 17;46(3):962-976. doi: 10.1039/c6dt04341k.
The dimers [{(ηn-ring)MCl}2(μ-Cl)2] ((ηn-ring)M = (η5-C5Me5)Ir, (η6-p-MeC6H4iPr)Ru) react with the modified cysteines S-benzyl-l-cysteine (HL1) or S-benzyl-α-methyl-l-cysteine (HL2) affording cationic complexes of the formula [(ηn-ring)MCl(κ2N,S-HL)]Cl (1, 2) in good yield. Addition of NaHCO3 to complexes 1 and 2 gave equilibrium mixtures of neutral [(ηn-ring)MCl(κ2N,O-L)] (3, 4) and cationic [(ηn-ring)M(κ3N,O,S-L)]Cl (6Cl, 7Cl) complexes. Similar mixtures were obtained in one-pot reaction by successive addition of the modified cysteine and NaHCO3 to the above formulated dimers. Addition of the N-Boc substituted cysteine derivative S-benzyl-N-Boc-l-cysteine (HL3) and NaHCO3 to the dimers [{(ηn-ring)MCl}2(μ-Cl)2] affords the neutral compounds [(ηn-ring)MCl(κ2O,S-L3)] ((ηn-ring)M = (η5-C5Me5)Ir (5a), (η6-p-MeC6H4iPr)Ru (5b)). Complexes of the formula [(ηn-ring)MCl(κ3N,O,S-L)][SbF6] (6Sb-8Sb), in which the cysteine derivative acts as a tridentate chelate ligand, can be prepared by adding one equivalent of AgSbF6 to the solutions of compounds 5 or to the mixtures of complexes 3/6Cl and 4/7Cl. The amide proton of compounds 8aSb and 8bSb can be removed by addition of NaHCO3 affording the neutral complexes [(ηn-ring)M(κ3N,O,S-L3-H)] ((ηn-ring)M = (η5-C5Me5)Ir (9a), (η6-p-MeC6H4iPr)Ru (9b)). Complexes 9a and 9b can also be prepared by reacting the dimers [{(ηn-ring)MCl}2(μ-Cl)2] with HL3 and two equivalents of NaHCO3. The absolute configuration of the complexes has been established by spectroscopic and diffractometric means including the crystal structure determination of (RIr,RC,RS)-[(η5-C5Me5)Ir(κ3N,O,S-L1)][SbF6] (6aSb). The thermodynamic parameters associated with the epimerization at sulphur that the iridium compound [(η5-C5Me5)Ir(κ3N,O,S-L3-H)] (9a) undergoes have been determined through variable temperature 1H NMR studies.
Online Inquiry
Verification code
Inquiry Basket