1. The Chinese bamboo leaf odorous frog (Rana (Odorrana) versabilis) and North American Rana frogs share the same families of skin antimicrobial peptides
Tianbao Chen, Mei Zhou, Pingfan Rao, Brian Walker, Chris Shaw Peptides. 2006 Jul;27(7):1738-44. doi: 10.1016/j.peptides.2006.02.009. Epub 2006 Apr 18.
The Chinese bamboo leaf odorous frog (Rana (Odorrana) versabilis) and the North American pickerel frog (Rana palustris) occupy different ecological niches on two different continents with no overlap in geographical distribution. R. palustris skin secretions contain a formidable array of antimicrobial peptides including homologs of brevinin-1, esculentin-1, esculentin-2, ranatuerin-2, a temporin and a family of peptides considered of unique structural attributes when isolated, palustrins 1-3. Here we describe the structures of mature peptides and precursors of eight putative antimicrobial peptides from the skin secretion of the Chinese bamboo leaf odorous frog (Rana (Odorrana) versabilis). Each peptide represents a structural homolog of respective peptide families isolated from R. palustris, including two peptides identical in primary structure to palustrin 1c and palustrin 3b. Additionally, two peptides were found to be structural homologs of ranatuerin 2B and ranatuerin 2P from the closely-related North American species, Rana berlandieri (the Rio Grande leopard frog) and Rana pipiens (the Northern leopard frog), respectively. Both palustrins and ranatuerins have hitherto been considered unique to North American ranid frogs. The use of primary structures of amphibian skin antimicrobial peptides is thus questionable as a taxonomic device or alternatively, the micro-evolution and/or ancestry of ranid frogs is more highly complex than previously thought.
2. Purification and characterization of novel antimicrobial peptides from the skin secretion of Hylarana guentheri
Jianwu Zhou, Stephen McClean, Alan Thompson, Yang Zhang, Chris Shaw, Pingfan Rao, Anthony J Bjourson Peptides. 2006 Dec;27(12):3077-84. doi: 10.1016/j.peptides.2006.08.007. Epub 2006 Sep 18.
Linear, amphipathic and cationic antimicrobial peptides have been previously reported from a wide range of amphibian species especially frogs of the genus Rana. Such antimicrobial peptides are attracting increasing attention in pharmacological applications because they mainly act by permeabilizing and disrupting the target cell or virion membranes with a low degree of resistance. The Guenther's frog, Hylarana guentheri, is a Chinese frog of the genus Rana that is widely distributed in Southern China. It is commonly the dominant amphibian species even where the amphibian population is declining. In this study, we describe the isolation, purification, structural and biological characterization of five novel peptides from H. guentheri frog skin secretions that possess antimicrobial activity, including brevinin-2GHa, brevinin-2GHb, brevinin-2GHc, temporin-GH and a novel antimicrobial peptide named guentherin. The cDNAs encoding two novel members of the brevinin-2 family, brevinin-2GHb and brevinin-2GHc were also subsequently cloned and sequenced.
3. Amphibian skin peptides and their corresponding cDNAs from single lyophilized secretion samples: identification of novel brevinins from three species of Chinese frogs
Tianbao Chen, Long Li, Mei Zhou, Pingfan Rao, Brian Walker, Chris Shaw Peptides. 2006 Jan;27(1):42-8. doi: 10.1016/j.peptides.2005.06.024. Epub 2005 Sep 1.
Brevinins are peptides of 24 amino acid residues, originally isolated from the skin of the Oriental frog, Rana brevipoda porsa, by nature of their microbicidal activity against a wide range of Gram-positive and Gram-negative bacteria and against strains of pathogenic fungi. cDNA libraries were constructed from lyophilized skin secretion of three, unstudied species of Chinese frog, Odorrana schmackeri, Odorrana versabilis and Pelophylax plancyi fukienensis, using our recently developed technique. In this report, we describe the "shotgun" cloning of novel brevinins by means of 3'-RACE, using a "universal" degenerate primer directed towards a highly conserved nucleic acid sequence domain within the 5'-untranslated region of previously characterized frog skin peptide cDNAs. Novel brevinins, deduced from cloned cDNA open-reading frames, were subsequently identified as mature peptides in the same samples of respective species skin secretions. Bioinformatic analysis of both prepro-brevinin nucleic acid sequences and translated open-reading frame amino acid sequences revealed a highly conserved signal peptide domain and a hypervariable anti-microbial peptide-encoding domain. The experimental approach described here can thus rapidly provide robust structural data on skin anti-microbial peptides without harming the donor amphibians.