1. Conformational preferences and activities of peptides from the catecholamine release-inhibitory (catestatin) region of chromogranin A
Nicholas E Preece, Minh Nguyen, Manjula Mahata, Sushil K Mahata, Nitish R Mahapatra, Igor Tsigelny, Daniel T O'Connor Regul Pept. 2004 Apr 15;118(1-2):75-87. doi: 10.1016/j.regpep.2003.10.035.
Previous modeling (PDB 1cfk) of the catecholamine release-inhibitory "catestatin" region of chromogranin A (CgA) suggested a beta-strand/loop/beta-strand active conformation, displaying an electropositive Arg-rich loop (R(351)AR(353)GYGFR(358)). To explore this possibility, we studied NMR structures of linear and cyclic synthetic catestatin, bovine (bCgA(344-364)) or human (hCgA(352-372)). By 2-D (1)H-NMR, the structure of linear catestatin (hCgA(352-372)) exhibited the NOE pattern of a coiled loop (PDB 1lv4). We then constrained the structure, cyclizing the putative Arg-rich loop connecting the beta-strands: cyclic bCgA(350-362) ([C(0)]F(350)RARGYGFRGPGL(362)[C(+14)]). Favored conformations of cyclic bCgA(350-362) were determined by (1)H-NMR and (13)C-NMR spectroscopy. Cyclic bCgA(350-362) conformers (PDB 1n2y) adopted a "twisted-loop" conformation. Alignment between the homology model and the cyclic NMR structure showed that, while portions of the NMR structure's mid-molecule and carboxy-terminus were congruent with the homology model (RMSD, 1.61-1.91 A), the amino-terminal "twisted loop" coiled inward and away from the model (RMSD, 3.36 A). Constrained cyclic bCgA(350-362) did not exert nicotinic cholinergic antagonist activity (IC(50)>10 microM), when compared to full-length linear (IC(50) approximately 0.42-0.56 microM), or cyclic (IC(50) approximately 0.74 microM) catestatin. Thus, loss of activity in the small, constrained peptide did not result from either [Cys]-extension or cyclization, per se. While linear catestatin displays coiled character, a small cyclic derivative lost biological activity, perhaps because its amino-terminal domain deviated sharply from the predicted active conformation. These results refine the relationship between structure and function in catestatin, and suggest goals in future peptidomimetic syntheses, in particular attempts to constrain the correct amino-terminal shape for biological activity.
2. Characterization of natural vasostatin-containing peptides in rat heart
Elise Glattard, Tommaso Angelone, Jean-Marc Strub, Angelo Corti, Dominique Aunis, Bruno Tota, Marie-Hélène Metz-Boutigue, Yannick Goumon FEBS J. 2006 Jul;273(14):3311-21. doi: 10.1111/j.1742-4658.2006.05334.x.
Chromogranin A (CGA) is a protein that is stored and released together with neurotransmitters and hormones in the nervous, endocrine and diffuse neuroendocrine systems. As human vasostatins I and II [CGA(1-76) and CGA(1-113), respectively] have been reported to affect vessel motility and exert concentration-dependent cardiosuppressive effects on isolated whole heart preparations of eel, frog and rat (i.e. negative inotropism and antiadrenergic activity), we investigated the presence of vasostatin-containing peptides in rat heart. Rat heart extracts were purified by RP-HPLC, and the resulting fractions analyzed for the presence of CGA N-terminal fragments using dot-blot analysis. CGA-immunoreactive fractions were submitted to western blot and MS analysis using the TOF/TOF technique. Four endogenous N-terminal CGA-derived peptides [CGA(4-113), CGA(1-124), CGA(1-135) and CGA(1-199)] containing the vasostatin sequence were characterized. The following post-translational modifications of these fragments were identified: phosphorylation at Ser96, O-glycosylation (trisaccharide, NAcGal-Gal-NeuAc) at Thr126, and oxidation at three methionine residues. This first identification of CGA-derived peptides containing the vasostatin motif in rat heart supports their role in cardiac physiology by an autocrine/paracrine mechanism.
3. Primary sequence characterization of catestatin intermediates and peptides defines proteolytic cleavage sites utilized for converting chromogranin a into active catestatin secreted from neuroendocrine chromaffin cells
Jean C Lee, et al. Biochemistry. 2003 Jun 17;42(23):6938-46. doi: 10.1021/bi0300433.
Catestatin is an active 21-residue peptide derived from the chromogranin A (CgA) precursor, and catestatin is secreted from neuroendocrine chromaffin cells as an autocrine regulator of nicotine-stimulated catecholamine release. The goal of this study was to characterize the primary sequences of high molecular mass catestatin intermediates and peptides to define the proteolytic cleavage sites within CgA that are utilized in the biosynthesis of catestatin. Catestatin-containing polypeptides, demonstrated by anti-catestatin western blots, of 54-56, 50, 32, and 17 kDa contained NH(2)-terminal peptide sequences that indicated proteolytic cleavages of the CgA precursor at KK downward arrow, KR downward arrow, R downward arrow, and KR downward arrow basic residue sites, respectively. The COOH termini of these catestatin intermediates were defined by the presence of the COOH-terminal tryptic peptide of the CgA precursor, corresponding to residues 421-430, which was identified by MALDI-TOF mass spectrometry. Results also demonstrated the presence of 54-56 and 50 kDa catestatin intermediates that contain the NH(2) terminus of CgA. Secretion of catestatin intermediates from chromaffin cells was accompanied by the cosecretion of catestatin (CgA(344)(-)(364)) and variant peptide forms (CgA(343)(-)(368) and CgA(332)(-)(361)). These determined cleavage sites predicted that production of high molecular mass catestatin intermediates requires cleavage at the COOH-terminal sides of paired basic residues, which is compatible with the cleavage specificities of PC1 and PC2 prohormone convertases. However, it is notable that production of catestatin itself (CgA(344)(-)(364)) utilizes more unusual cleavage sites at the NH(2)-terminal sides of downward arrow R and downward arrow RR basic residue sites, consistent with the cleavage specificities of the chromaffin granule cysteine protease "PTP" that participates in proenkephalin processing. These findings demonstrate that production of catestatin involves cleavage of CgA at paired basic and monobasic residues, necessary steps for catestatin peptide regulation of nicotinic cholinergic-induced catecholamine release.