Need Assistance?
  • US & Canada:
    +
  • UK: +

ChaC2

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

ChaC2 is isolated from Chassalia chartacea (or Chassalia curviflora). It plays a role on cancer cells.

Category
Functional Peptides
Catalog number
BAT-013381
Sequence
GIPCAESCVWIPPCTITALMGCSCKNNVCYNN
1. ChaC2, an Enzyme for Slow Turnover of Cytosolic Glutathione
Amandeep Kaur, Ruchi Gautam, Ritika Srivastava, Avinash Chandel, Akhilesh Kumar, Subramanian Karthikeyan, Anand Kumar Bachhawat J Biol Chem. 2017 Jan 13;292(2):638-651. doi: 10.1074/jbc.M116.727479. Epub 2016 Dec 2.
Glutathione degradation plays an important role in glutathione and redox homeostasis, and thus it is imperative to understand the enzymes and the mechanisms involved in glutathione degradation in detail. We describe here ChaC2, a member of the ChaC family of γ-glutamylcyclotransferases, as an enzyme that degrades glutathione in the cytosol of mammalian cells. ChaC2 is distinct from the previously described ChaC1, to which ChaC2 shows ~50% sequence identity. Human and mouse ChaC2 proteins purified in vitro show 10-20-fold lower catalytic efficiency than ChaC1, although they showed comparable Km values (Km of 3.7 ± 0.4 mm and kcat of 15.9 ± 1.0 min-1 toward glutathione for human ChaC2; Km of 2.2 ± 0.4 mm and kcat of 225.2 ± 15 min-1 toward glutathione for human ChaC1). The ChaC1 and ChaC2 proteins also shared the same specificity for reduced glutathione, with no activity against either γ-glutamyl amino acids or oxidized glutathione. The ChaC2 proteins were found to be expressed constitutively in cells, unlike the tightly regulated ChaC1. Moreover, lower eukaryotes have a single member of the ChaC family that appears to be orthologous to ChaC2. In addition, we determined the crystal structure of yeast ChaC2 homologue, GCG1, at 1.34 Å resolution, which represents the first structure of the ChaC family of proteins. The catalytic site is defined by a fortuitous benzoic acid molecule bound to the crystal structure. The mechanism for binding and catalytic activity of this new enzyme of glutathione degradation, which is involved in continuous but basal turnover of cytosolic glutathione, is proposed.
2. Cancer informatics analysis indicates high CHAC2 associated with unfavorable prognosis in breast cancer
Subhash Chand, Vikrant Mehta, Ratnesh K Sharma, Anupkumar R Anvikar, Harish Chander Front Oncol. 2022 Dec 9;12:1058931. doi: 10.3389/fonc.2022.1058931. eCollection 2022.
Breast cancer remains the most commonly diagnosed cancer worldwide and exhibits a poor prognosis. The induction of genetic changes deregulates several genes that increase the disposal towards this life-threatening disease. CHAC2, a member of the glutathione degrading enzyme family has been shown to suppress gastric and colorectal cancer progression, however, the expression of CHAC2 in breast cancer has not been reported. We did an analysis of CHAC2 expression in breast cancer patients from various online tools like UALCAN, GEPIA2, GENT2, TIMER2, and bcGenExminer v4.8. Further, we used the Kaplan-Meier plotter to establish the significance of CHAC2 in BC patient survival and prognosis while TISIDB and TIMER databases were used to investigate the filtration of immune cells. The results showed that CHAC2 levels were high in breast cancer patients and elevated CHAC2 was associated with low overall survival. Taken together, the results of the present study show that like its paralog CHAC1, CHAC2 may also be an important biomarker and could have a potential therapeutic implication in breast cancer.
3. CHAC2 is essential for self-renewal and glutathione maintenance in human embryonic stem cells
Cheng-Kai Wang, Shang-Chih Yang, Shu-Ching Hsu, Fang-Pei Chang, Yu-Tsen Lin, Shang-Fu Chen, Chin-Lun Cheng, Michael Hsiao, Frank Leigh Lu, Jean Lu Free Radic Biol Med. 2017 Dec;113:439-451. doi: 10.1016/j.freeradbiomed.2017.10.345. Epub 2017 Oct 18.
Glutathione (GSH), the major non-enzymatic antioxidant, plays a critical role in cellular reactive oxygen species (ROS) neutralization. Moreover, GSH is required for the self-renewal maintenance of human embryonic stem cells (hESCs), and is highly accumulated in undifferentiated cells. Among 8 GSH biosynthesis-related enzymes, we found CHAC2 is highly enriched in undifferentiated hESCs. CHAC2 downregulation in hESCs efficiently decreased the levels of GSH and blocked self-renewal. The self-renewal of sh-CHAC2 cells can be rescued by GSH supplement. CHAC2 downregulation promoted mesoderm differentiation and hampered both teratoma formation and the expression of Nrf2 and glutamate-cysteine ligase (GCL). Notably, CHAC1 knockdown restored the self-renewability of CHAC2-downregulated cells. Although both CHAC1 and CHAC2 purified protein alone showed the catalytic activities to GSH, our data extraordinarily revealed that CHAC2 prevented CHAC1-mediated GSH degradation, which suggests that CHAC2 competes with CHAC1 to maintain GSH homeostasis. This is the first report to demonstrate that CHAC2 is critical for GSH maintenance and the novel roles of the CHAC family in hESC renewal.
Online Inquiry
Verification code
Inquiry Basket