ω-Conotoxin GVIA
Need Assistance?
  • US & Canada:
    +
  • UK: +

ω-Conotoxin GVIA

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

ω-Conotoxin GVIA is a peptide neurotoxin first isolated from the marine snail Conus geographus L. It selectively and reversibly blocks specific voltage-dependent N-type Ca2+ channels in neurons, but not in muscle. It reduces (RS)-3,5-DHPG2-induced long term depression in vivo. It does not bind to either the dihydropyridine or verapamil binding sites. It is used as a powerful probe for exploring the vertebrate pre-synaptic terminal.

Category
Peptide Inhibitors
Catalog number
BAT-010132
CAS number
106375-28-4
Molecular Formula
C120H182N38O43S6
Molecular Weight
3037.34
ω-Conotoxin GVIA
IUPAC Name
(1R,4S,8R,10S,13S,16S,19S,22S,25R,30R,33S,36S,39S,42S,45S,47R,51S,54R,57S,60S,63R,68R,71S,74S,78R,80S,86S,89S)-68-amino-36,71-bis(4-aminobutyl)-N-[(2S)-1-amino-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]-22,51-bis(2-amino-2-oxoethyl)-33,60-bis(3-carbamimidamidopropyl)-8,47,78-trihydroxy-13,39-bis[(1R)-1-hydroxyethyl]-4,16,57,74,86,89-hexakis(hydroxymethyl)-19,42-bis[(4-hydroxyphenyl)methyl]-2,5,11,14,17,20,23,32,35,38,41,44,50,53,56,59,62,69,72,75,81,84,87,90,97-pentacosaoxo-27,28,65,66,93,94-hexathia-3,6,12,15,18,21,24,31,34,37,40,43,49,52,55,58,61,70,73,76,82,85,88,91,96-pentacosazahexacyclo[52.37.4.225,63.06,10.045,49.076,80]heptanonacontane-30-carboxamide
Synonyms
omega-Conotoxin gvia
Density
1.7±0.1 g/cm3
Sequence
C(1)KSXGSSC(2)SXTSYNC(3)C(1)RSC(2)NXYTKRC(3)Y
Storage
Store at -20°C
InChI
InChI=1S/C120H182N38O43S6/c1-53(165)91-114(197)138-66(10-4-6-26-122)95(178)136-68(12-8-28-132-120(129)130)98(181)149-81(107(190)139-69(93(126)176)29-55-13-19-58(167)20-14-55)49-204-207-52-84-110(193)153-80-48-203-202-47-64(123)94(177)135-65(9-3-5-25-121)97(180)147-78(45-163)117(200)156-38-61(170)32-85(156)111(194)133-37-90(175)134-74(41-159)102(185)145-76(43-161)105(188)152-83(109(192)148-79(46-164)118(201)158-40-63(172)34-87(158)113(196)155-92(54(2)166)115(198)146-77(44-162)103(186)140-70(30-56-15-21-59(168)22-16-56)99(182)141-72(35-88(124)173)100(183)150-84)51-206-205-50-82(151-104(187)75(42-160)144-96(179)67(137-106(80)189)11-7-27-131-119(127)128)108(191)143-73(36-89(125)174)116(199)157-39-62(171)33-86(157)112(195)142-71(101(184)154-91)31-57-17-23-60(169)24-18-57/h13-24,53-54,61-87,91-92,159-172H,3-12,25-52,121-123H2,1-2H3,(H2,124,173)(H2,125,174)(H2,126,176)(H,133,194)(H,134,175)(H,135,177)(H,136,178)(H,137,189)(H,138,197)(H,139,190)(H,140,186)(H,141,182)(H,142,195)(H,143,191)(H,144,179)(H,145,185)(H,146,198)(H,147,180)(H,148,192)(H,149,181)(H,150,183)(H,151,187)(H,152,188)(H,153,193)(H,154,184)(H,155,196)(H4,127,128,131)(H4,129,130,132)/t53-,54-,61-,62-,63-,64+,65+,66+,67+,68+,69+,70+,71-,72+,73+,74+,75+,76+,77+,78+,79+,80+,81+,82+,83+,84+,85+,86+,87+,91+,92+/m1/s1
InChI Key
FDQZTPPHJRQRQQ-PYWHTJBVSA-N
Canonical SMILES
CC(C1C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC2CSSCC(NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C3CC(CN3C(=O)C(NC(=O)C4CSSCC(C(=O)NC(C(=O)N5CC(CC5C(=O)N1)O)CO)NC(=O)C(NC(=O)C(NC(=O)CNC(=O)C6CC(CN6C(=O)C(NC(=O)C(NC(=O)C(CSSCC(C(=O)NC(C(=O)NC(C(=O)N4)CO)CCCNC(=N)N)NC2=O)N)CCCCN)CO)O)CO)CO)CC(=O)N)O)CC7=CC=C(C=C7)O)C(C)O)CCCCN)CCCNC(=N)N)C(=O)NC(CC8=CC=C(C=C8)O)C(=O)N)CC(=O)N)CC9=CC=C(C=C9)O)CO)O
1. omega-Conotoxin-GVIA-sensitive calcium channels on preganglionic nerve terminals in mouse pelvic and celiac ganglia
Phillip Jobling Auton Neurosci . 2009 Mar 12;146(1-2):56-61. doi: 10.1016/j.autneu.2008.11.014.
Release of acetylcholine (ACh) from preganglionic nerve terminals requires calcium entry through voltage-gated calcium channels. The calcium channel subtype required for ACh release varies depending on the particular ganglionic synapse. I have investigated the functional role of calcium channels in transmitter release from parasympathetic and sympathetic preganglionic terminals in pelvic and celiac ganglia of female mice. Single electrode voltage clamp was used to measure EPSC amplitude in the absence and presence of selective calcium channel antagonists. In pelvic ganglia omega- conotoxin GVIA, a selective N-type calcium channel antagonist, reduced the amplitude of EPSCs evoked by pelvic nerve stimulation by 46+/-5% (n=8, P=0.015). In contrast, in the celiac ganglion, omega- conotoxin GVIA had no effect on the amplitude of EPSCs evoked by splanchnic nerve stimulation (P=0.09, n=7). EPSCs in both pelvic and celiac ganglia were resistant to the P-type calcium channel antagonist agatoxin (50 nM, n=5 for both ganglia) and the R-type calcium channel antagonist SNX482 (100 nM, n=4 for both ganglia). These results indicate that in female mice, release of ACh in sympathetic pathways to prevertebral ganglia does not require calcium entry from N-type calcium channels. However, release of ACh from sacral parasympathetic preganglionic neurons requires calcium entry from both N-type and toxin-resistant calcium channels.
2. Effects of omega-conotoxin GVIA on autonomic neuroeffector transmission in various tissues
H K Wong-Dusting, A De Luca, C G Li, M J Rand, P Thaina, J J Reid Br J Pharmacol . 1990 Oct;101(2):437-47. doi: 10.1111/j.1476-5381.1990.tb12727.x.
1. The effects of omega-conotoxin GVIA (conotoxin), a potent inhibitor of neuronal N-type Ca2+ channels, have been examined on responses to stimulation of noradrenergic, cholinergic and non-adrenergic, non-cholinergic (NANC) nerves in a range of isolated tissues to investigate the role of conotoxin-sensitive Ca2+ channels in neurotransmission. 2. Contractions elicited by field stimulation of noradrenergic nerves in rat and mouse anococcygeus muscles, rabbit ear artery and rat vas deferens (epididymal portion) were inhibited by conotoxin. Responses to noradrenaline, and to adenosine triphosphate in the vas deferens, were not affected. 3. Positive chronotropic responses to field stimulation of noradrenergic nerves were inhibited by conotoxin in rat and mouse atria, but responses to noradrenaline and tyramine were not affected. 4. The stimulation-induced release of noradrenaline was inhibited by conotoxin in the rabbit ear artery and in rat and mouse atria. 5. Relaxations in response to stimulation of the noradrenergic perivascular mesenteric nerves were reduced or abolished by conotoxin in rat and rabbit jejunum. The response to noradrenaline in rat jejunum was not affected. 6. Contractions elicited by stimulation of cholinergic nerves were inhibited by conotoxin in rat jejunum and mouse ileum (perivascular mesenteric nerves), and in guinea-pig taenia caeci (field stimulation). Responses to acetylcholine in rat jejunum and mouse ileum were not affected. 7. Contractions elicited by stimulation of the cholinergic plus NANC pelvic nerves were inhibited by conotoxin in rabbit colon, and to a lesser extent in guinea-pig colon. The stimulation-induced contraction of the guinea-pig colon was inhibited by conotoxin by a greater proportion in the presence than in the absence of atropine. Responses to acetylcholine were not affected in the rabbit colon but were slightly reduced in the guinea-pig colon. 8. Relaxations in response to field stimulation of NANC nerves were inhibited by conotoxin in guinea-pig taenia caeci and rat gastric fundus strips, and in rat anococcygeus muscle when the tone was raised by guanethidine but not when it was raised by carbachol. The relaxations produced by sodium nitroprusside in the rat gastric fundus and anococcygeus were not affected. 9. Contractions of the rat bladder elicited by stimulation of the peri-urethral nerves, which are NANC- and cholinergically mediated, were relatively insensitive to inhibition by conotoxin. The response were almost completely abolished by tetrodotoxin. 10. The conotoxin-induced inhibitions of responses to nerve stimulation developed slowly and persisted after removal of conotoxin. The responses were almost completely abolished by tetrodotoxin. 10. The conotoxin-induced inhibitions of responses to nerve stimulation developed slowly and persisted after removal of conotoxin. 11. The inhibitory effect of conotoxin was inversely proportional to the frequency of stimulation (in several preparations) and to the Ca2+ concentration in the bathing solution (in rat vas deferens). These observations suggest that the inhibition by conotoxin of the Ca2+ influx required for excitation-secretion coupling in autonomic nerve terminals is not absolute, and can be overcome by repeated stimulation or by raising the Ca2 + concentration.
3. omega-conotoxin GVIA alters gating charge movement of N-type (CaV2.2) calcium channels
Keith S Elmslie, Viktor Yarotskyy J Neurophysiol . 2009 Jan;101(1):332-40. doi: 10.1152/jn.91064.2008.
omega-conotoxin GVIA (omegaCTX) is a specific blocker of N-type calcium (CaV2.2) channels that inhibits neuropathic pain. While the toxin appears to be an open channel blocker, we show that N-channel gating charge movement is modulated. Gating currents were recorded from N-channels expressed along with beta2a and alpha2delta subunits in HEK293 cells in external solutions containing either lanthanum and magnesium (La-Mg) or 5 mM Ca2+ plus omegaCTX (omegaCTX-Ca). A comparison showed that omegaCTX induced a 10-mV right shift in the gating charge versus voltage (Q-V) relationship, smaller off-gating current time constant (tau Q(Off)), a lower tau Q(Off) voltage dependence, and smaller on-gating current (Q(On)) tau. We also examined gating current in La-Mg plus omegaCTX and found no significant difference from that in omegaCTX-Ca; this demonstrates that the modulation was induced by the toxin. A model with strongly reduced open-state occupancy reproduced the omegaCTX effect on gating current and showed that the gating modulation alone would inhibit N-current by 50%. This mechanism of N-channel inhibition could be exploited to develop novel analgesics that induce only a partial block of N-current, which may limit some of the side effects associated with the toxin analgesic currently approved for human use (i.e., Prialt).
Online Inquiry
Verification code
Inquiry Basket