α-Conotoxin PnIA
Need Assistance?
  • US & Canada:
    +
  • UK: +

α-Conotoxin PnIA

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

α-Conotoxin PnIA is a nicotinic acetylcholine receptor antagonist. It is selective for α3β2 nAChR receptors with IC50 value of 9.56 nM. It was sold under license for Cognetix for research purposes only.

Category
Peptide Inhibitors
Catalog number
BAT-010251
CAS number
705300-84-1
Molecular Formula
C65H95N19O22S4
Molecular Weight
1622.82
α-Conotoxin PnIA
IUPAC Name
2-[(1R,6R,9S,12S,15S,21S,24S,27S,30S,33R,36S,42S,48S,51S,56R)-56-[(2-aminoacetyl)amino]-21,24-bis(2-amino-2-oxoethyl)-6-carbamoyl-51-(hydroxymethyl)-9-[(4-hydroxyphenyl)methyl]-27,30-dimethyl-48-(2-methylpropyl)-8,11,14,20,23,26,29,32,35,41,47,50,53,55-tetradecaoxo-3,4,58,59-tetrathia-7,10,13,19,22,25,28,31,34,40,46,49,52,54-tetradecazapentacyclo[31.20.7.015,19.036,40.042,46]hexacontan-12-yl]acetic acid
Synonyms
alpha-conotoxin PnIA; 705300-84-1; A-CONOTOXIN PNIACHEMBL4443205GTPL3982
Appearance
White Lyophilized Solid
Purity
>97%
Density
1.5±0.1 g/cm3
Boiling Point
2110.8±65.0°C at 760 mmHg
Sequence
GC(1)C(2)SLPPC(1)AANNPDYC(2)
Storage
Store at -20°C
InChI
InChI=1S/C65H95N19O22S4/c1-29(2)18-37-63(104)84-17-7-10-46(84)65(106)83-16-6-9-45(83)62(103)81-42-27-110-108-26-41(72-49(89)23-66)59(100)80-43(60(101)78-39(24-85)57(98)76-37)28-109-107-25-40(51(69)92)79-54(95)34(19-32-11-13-33(86)14-12-32)74-56(97)36(22-50(90)91)75-61(102)44-8-5-15-82(44)64(105)38(21-48(68)88)77-55(96)35(20-47(67)87)73-53(94)31(4)70-52(93)30(3)71-58(42)99/h11-14,29-31,34-46,85-86H,5-10,15-28,66H2,1-4H3,(H2,67,87)(H2,68,88)(H2,69,92)(H,70,93)(H,71,99)(H,72,89)(H,73,94)(H,74,97)(H,75,102)(H,76,98)(H,77,96)(H,78,101)(H,79,95)(H,80,100)(H,81,103)(H,90,91)/t30-,31-,34-,35-,36-,37-,38-,39-,40-,41-,42-,43-,44-,45-,46-/m0/s1
InChI Key
VUVGEYBNLLGGBG-MVPSLEAZSA-N
Canonical SMILES
CC1C(=O)NC(C(=O)NC(C(=O)N2CCCC2C(=O)NC(C(=O)NC(C(=O)NC(CSSCC3C(=O)NC(C(=O)NC(C(=O)N4CCCC4C(=O)N5CCCC5C(=O)NC(CSSCC(C(=O)N3)NC(=O)CN)C(=O)NC(C(=O)N1)C)CC(C)C)CO)C(=O)N)CC6=CC=C(C=C6)O)CC(=O)O)CC(=O)N)CC(=O)N
1.A model for short alpha-neurotoxin bound to nicotinic acetylcholine receptor from Torpedo californica: comparison with long-chain alpha-neurotoxins and alpha-conotoxins.
Mordvintsev DY;Polyak YL;Levtsova OV;Tourleigh YV;Kasheverov IE;Shaitan KV;Utkin YN;Tsetlin VI Comput Biol Chem. 2005 Dec;29(6):398-411. Epub 2005 Nov 11.
Short-chain alpha-neurotoxins from snakes are highly selective antagonists of the muscle-type nicotinic acetylcholine receptors (nAChR). Although their spatial structures are known and abundant information on topology of binding to nAChR is obtained by labeling and mutagenesis studies, the accurate structure of the complex is not yet known. Here, we present a model for a short alpha-neurotoxin, neurotoxin II from Naja oxiana (NTII), bound to Torpedo californica nAChR. It was built by comparative modeling, docking and molecular dynamics using 1H NMR structure of NTII, cross-linking and mutagenesis data, cryoelectron microscopy structure of Torpedo marmorata nAChR [Unwin, N., 2005. Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J. Mol. Biol. 346, 967-989] and X-ray structures of acetylcholine-binding protein (AChBP) with agonists [Celie, P.H., van Rossum-Fikkert, S.E., van Dijk, W.J., Brejc, K., Smit, A.B., Sixma, T.K., 2004. Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures. Neuron 41 (6), 907-914] and antagonists: alpha-cobratoxin, a long-chain alpha-neurotoxin [Bourne, Y., Talley, T.T., Hansen, S.
2.Single amino acid substitutions in alpha-conotoxin PnIA shift selectivity for subtypes of the mammalian neuronal nicotinic acetylcholine receptor.
Hogg RC;Miranda LP;Craik DJ;Lewis RJ;Alewood PF;Adams DJ J Biol Chem. 1999 Dec 17;274(51):36559-64.
The alpha-conotoxins, a class of nicotinic acetylcholine receptor (nAChR) antagonists, are emerging as important probes of the role played by different nAChR subtypes in cell function and communication. In this study, the native alpha-conotoxins PnIA and PnIB were found to cause concentration-dependent inhibition of the ACh-induced current in all rat parasympathetic neurons examined, with IC(50) values of 14 and 33 nM, and a maximal reduction in current amplitude of 87% and 71%, respectively. The modified alpha-conotoxin [N11S]PnIA reduced the ACh-induced current with an IC(50) value of 375 nM and a maximally effective concentration caused 91% block. [A10L]PnIA was the most potent inhibitor, reducing the ACh-induced current in approximately 80% of neurons, with an IC(50) value of 1.4 nM and 46% maximal block of the total current. The residual current was not inhibited further by alpha-bungarotoxin, but was further reduced by the alpha-conotoxins PnIA or PnIB, and by mecamylamine. (1)H NMR studies indicate that PnIA, PnIB, and the analogues, [A10L]PnIA and [N11S]PnIA, have identical backbone structures. We propose that positions 10 and 11 of PnIA and PnIB influence potency and determine selectivity among alpha7 and other nAChR subtypes, including alpha3beta2 and alpha3beta4.
3.Crystal structure of nicotinic acetylcholine receptor homolog AChBP in complex with an alpha-conotoxin PnIA variant.
Celie PH;Kasheverov IE;Mordvintsev DY;Hogg RC;van Nierop P;van Elk R;van Rossum-Fikkert SE;Zhmak MN;Bertrand D;Tsetlin V;Sixma TK;Smit AB Nat Struct Mol Biol. 2005 Jul;12(7):582-8. Epub 2005 Jun 12.
Conotoxins (Ctx) form a large family of peptide toxins from cone snail venoms that act on a broad spectrum of ion channels and receptors. The subgroup alpha-Ctx specifically and selectively binds to subtypes of nicotinic acetylcholine receptors (nAChRs), which are targets for treatment of several neurological disorders. Here we present the structure at a resolution of 2.4 A of alpha-Ctx PnIA (A10L D14K), a potent blocker of the alpha(7)-nAChR, bound with high affinity to acetylcholine binding protein (AChBP), the prototype for the ligand-binding domains of the nAChR superfamily. Alpha-Ctx is buried deep within the ligand-binding site and interacts with residues on both faces of adjacent subunits. The toxin itself does not change conformation, but displaces the C loop of AChBP and induces a rigid-body subunit movement. Knowledge of these contacts could facilitate the rational design of drug leads using the Ctx framework and may lead to compounds with increased receptor subtype selectivity.
Online Inquiry
Verification code
Inquiry Basket