1. Antimicrobial peptides with therapeutic potential from skin secretions of the Marsabit clawed frog Xenopus borealis (Pipidae)
Milena Mechkarska, Eman Ahmed, Laurent Coquet, Jérôme Leprince, Thierry Jouenne, Hubert Vaudry, Jay D King, J Michael Conlon Comp Biochem Physiol C Toxicol Pharmacol. 2010 Nov;152(4):467-72. doi: 10.1016/j.cbpc.2010.07.007. Epub 2010 Jul 23.
Nine peptides with differential growth inhibitory activity against Escherichia coli and Staphylococcus aureus were isolated from norepinephrine-stimulated skin secretions of the tetraploid frog Xenopus borealis Parker, 1936 (Pipidae). Structural characterization of the peptides demonstrated that they were orthologous to magainin-2 (1 peptide), peptide glycine-leucine-amide, PGLa (2 peptides), caerulein-precursor fragments, CPF (4 peptides), and xenopsin-precursor fragments, XPF (2 peptides), previously isolated from Xenopus laevis and X. amieti. In addition, a second magainin-related peptide (G**KFLHSAGKFGKAFLGEVMIG) containing a two amino acid residue deletion compared with magainin-2 was identified that had only weak antimicrobial activity. The peptide with the greatest potential for development into a therapeutically valuable anti-infective agent was CPF-B1 (GLGSLLGKAFKIGLKTVGKMMGGAPREQ) with MIC=5 microM against E. coli, MIC=5 microM against S. aureus, and MIC=25 microM against Candida albicans, and low hemolytic activity against human erythrocytes (LC(50)>200 microM). This peptide was also the most abundant antimicrobial peptide in the skin secretions. CPF-B1 was active against clinical isolates of the nosocomial pathogens, methicillin-resistant S. aureus (MRSA) and multidrug-resistant Acinetobacter baumannii (MDRAB) with MIC values in the range 4-8 microM.
2. Host-defense peptides from skin secretions of the tetraploid frogs Xenopus petersii and Xenopus pygmaeus, and the octoploid frog Xenopus lenduensis (Pipidae)
Jay D King, Milena Mechkarska, Laurent Coquet, Jérôme Leprince, Thierry Jouenne, Hubert Vaudry, Koji Takada, J Michael Conlon Peptides. 2012 Jan;33(1):35-43. doi: 10.1016/j.peptides.2011.11.015. Epub 2011 Nov 22.
Peptidomic analysis of norepinephrine-stimulated skin secretions led to the identification of host-defense peptides belonging to the magainin, peptide glycine-leucine-amide (PGLa), and caerulein precursor fragment (CPF) families from the tetraploid frogs, Xenopus petersii (Peters' clawed frog) and Xenopus pygmaeus (Bouchia clawed frog), and the octoploid frog Xenopus lenduensis (Lendu Plateau clawed frog). Xenopsin-precursor fragment (XPF) peptides were not detected. The primary structures of the antimicrobial peptides from X. petersii demonstrate a close, but not conspecific relationship, with Xenopus laevis whereas the X. pygmaeus peptides show appreciable variation from previously characterized orthologs from other Xenopus species. Polyploidization events within the Xenopodinae (Silurana+Xenopus) are associated with extensive gene silencing (nonfunctionization) but unexpectedly the full complement of four PGLa paralogs were isolated from X. lenduendis secretions. Consistent with previous data, the CPF peptides showed the highest growth-inhibitory activity against bacteria with CPF-PG1 (GFGSLLGKALKIGTNLL.NH(2)) from X. pygmaeus combining high antimicrobial potency against Staphylococcus aureus (MIC=6 μM) with relatively low hemolytic activity (LC(50)=145 μM).
3. Genome duplications within the Xenopodinae do not increase the multiplicity of antimicrobial peptides in Silurana paratropicalis and Xenopus andrei skin secretions
Milena Mechkarska, Ahmed Eman, Laurent Coquet, Leprince Jérôme, Thierry Jouenne, Hubert Vaudry, Jay D King, Koji Takada, J Michael Conlon Comp Biochem Physiol Part D Genomics Proteomics. 2011 Jun;6(2):206-12. doi: 10.1016/j.cbd.2011.03.003. Epub 2011 Apr 4.
A putative genome duplication event within the Silurana lineage has given rise to the tetraploid frog S. paratropicalis and a second polyploidization within the Xenopus lineage has produced the octoploid frog X. andrei. Peptidomic analysis of norepinephrine-stimulated skin secretions of S. paratropicalis and X. andrei led to identification of multiple peptides with growth-inhibitory activity against Escherichia coli and Staphylococcus aureus. Structural characterization demonstrated that the S. paratropicalis components comprised three peptides belonging to the caerulein-precursor fragment family (CPF-SP1, -SP2 and -SP3), two peptides from the xenopsin-precursor fragment family (XPF-SP1 and -SP2), and one peptide orthologous to peptide glycine-leucine-amide (PGLa-SP1). The CPF peptides showed potent, broad-spectrum antimicrobial activity. The X. andrei components comprised two peptides from the magainin family, (magainin-AN1 and -AN2), two from the XPF family (XPF-AN1 and -AN2), two from the PGLa family(PGLa-AN1 and -AN2), and one caerulein-precursor fragment (CPF-AN1).The primary structures of these peptides indicate a close phylogenetic relationship between X. andrei and the octoploid frog X. amieti. Under the same experimental conditions, seven orthologous antimicrobial peptides were previously isolated from the diploid frog S. tropicalis, nine from the tetraploid frog X. borealis, and five from the tetraploid frog X. clivii. The data indicate, therefore, that nonfunctionalization (gene deletion) has been the most common fate of duplicated antimicrobial peptide genes following polyploidization events in the Silurana and Xenopus lineages.