CRF, bovine
Need Assistance?
  • US & Canada:
    +
  • UK: +

CRF, bovine

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

CRF, bovine is an effective agonist of CRF (Corticotropin-releasing factor) receptor.

Category
Peptide Inhibitors
Catalog number
BAT-010458
CAS number
92307-52-3
Molecular Formula
C206H340N60O63S
Molecular Weight
4697.33
CRF, bovine
IUPAC Name
(4S)-5-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[1-[[(2S,3R)-1-[[(2S)-6-amino-1-[[(2R)-1-[[(2R)-1-[[(2R)-5-amino-1-[[(2R)-1-[[(2R)-1-[[(2R)-5-amino-1-[[(2R)-5-amino-1-[[(2R)-1-[[(2R)-1-[[(2R)-4-amino-1-[[(2R)-4-amino-1-[[(2R)-1-[[(2R)-6-amino-1-[[(2R)-1-[[(2R)-1-[[(2R)-1-[[(2S,3R)-1-[[(2R)-1-amino-1-oxopropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-3-carboxy-1-oxopropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-3-(1H-imidazol-4-yl)-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-3-carboxy-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-4-methylsulfanyl-1-oxobutan-2-yl]amino]-4-carboxy-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-4-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3S)-2-[[(2R)-1-[(2R)-1-[(2S)-2-[[(2S)-5-amino-2-[[(2S)-2-amino-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]-4-carboxybutanoyl]pyrrolidine-2-carbonyl]pyrrolidine-2-carbonyl]amino]-3-methylpentanoyl]amino]-3-hydroxypropanoyl]amino]-4-methylpentanoyl]amino]-3-carboxypropanoyl]amino]-4-methylpentanoyl]amino]-3-hydroxybutanoyl]amino]-3-phenylpropanoyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-oxopentanoic acid
Synonyms
Corticotropin Releasing Factor bovine; H-Ser-Gln-Glu-D-Pro-D-Pro-Ile-Ser-Leu-Asp-Leu-aThr-Phe-His-Leu-Leu-Arg-Glu-Val-Leu-Glu-DL-Met-Thr-Lys-D-Ala-D-Asp-D-Gln-D-Leu-D-Ala-D-Gln-D-Gln-D-Ala-D-His-D-Asn-D-Asn-D-Arg-D-Lys-D-Leu-D-Leu-D-Asp-aIle-D-Ala-NH2; L-seryl-L-glutaminyl-L-alpha-glutamyl-D-prolyl-D-prolyl-L-isoleucyl-L-seryl-L-leucyl-L-alpha-aspartyl-L-leucyl-L-allothreonyl-L-phenylalanyl-L-histidyl-L-leucyl-L-leucyl-L-arginyl-L-alpha-glutamyl-L-valyl-L-leucyl-L-alpha-glutamyl-DL-methionyl-L-threonyl-L-lysyl-D-alanyl-D-alpha-aspartyl-D-glutaminyl-D-leucyl-D-alanyl-D-glutaminyl-D-glutaminyl-D-alanyl-D-histidyl-D-asparagyl-D-asparagyl-D-arginyl-D-lysyl-D-leucyl-D-leucyl-D-alpha-aspartyl-L-alloisoleucyl-D-alaninamide
Appearance
White or Off-white Lyophilized Powder
Purity
95%
Sequence
SQEPPISLDLTFHLLREVLEMTKADQLAQQAHNNRKLLDIA-NH2
Storage
Store at -20°C
Solubility
Soluble in Water
InChI
InChI=1S/C206H340N60O63S/c1-30-104(21)160(199(324)227-106(23)164(216)289)261-195(320)143(88-158(287)288)256-185(310)132(77-99(11)12)248-183(308)130(75-97(7)8)246-173(298)117(46-36-38-67-208)233-171(296)118(47-39-68-223-205(217)218)235-190(315)139(84-151(214)275)254-191(316)140(85-152(215)276)253-188(313)137(82-113-89-221-93-225-113)243-166(291)108(25)229-170(295)120(51-58-147(210)271)236-174(299)121(52-59-148(211)272)231-165(290)107(24)230-180(305)128(73-95(3)4)245-177(302)123(54-61-150(213)274)238-192(317)141(86-156(283)284)244-167(292)109(26)228-169(294)116(45-35-37-66-207)241-201(326)162(110(27)269)263-179(304)126(65-72-330-29)240-175(300)124(55-62-153(277)278)239-182(307)134(79-101(15)16)257-198(323)159(103(19)20)260-178(303)125(56-63-154(279)280)237-172(297)119(48-40-69-224-206(219)220)234-181(306)129(74-96(5)6)247-184(309)131(76-98(9)10)249-189(314)138(83-114-90-222-94-226-114)252-187(312)136(81-112-43-33-32-34-44-112)258-202(327)163(111(28)270)264-194(319)135(80-102(17)18)250-193(318)142(87-157(285)286)255-186(311)133(78-100(13)14)251-196(321)144(92-268)259-200(325)161(105(22)31-2)262-197(322)145-49-41-70-265(145)204(329)146-50-42-71-266(146)203(328)127(57-64-155(281)282)242-176(301)122(53-60-149(212)273)232-168(293)115(209)91-267/h32-34,43-44,89-90,93-111,115-146,159-163,267-270H,30-31,35-42,45-88,91-92,207-209H2,1-29H3,(H2,210,271)(H2,211,272)(H2,212,273)(H2,213,274)(H2,214,275)(H2,215,276)(H2,216,289)(H,221,225)(H,222,226)(H,227,324)(H,228,294)(H,229,295)(H,230,305)(H,231,290)(H,232,293)(H,233,296)(H,234,306)(H,235,315)(H,236,299)(H,237,297)(H,238,317)(H,239,307)(H,240,300)(H,241,326)(H,242,301)(H,243,291)(H,244,292)(H,245,302)(H,246,298)(H,247,309)(H,248,308)(H,249,314)(H,250,318)(H,251,321)(H,252,312)(H,253,313)(H,254,316)(H,255,311)(H,256,310)(H,257,323)(H,258,327)(H,259,325)(H,260,303)(H,261,320)(H,262,322)(H,263,304)(H,264,319)(H,277,278)(H,279,280)(H,281,282)(H,283,284)(H,285,286)(H,287,288)(H4,217,218,223)(H4,219,220,224)/t104-,105+,106-,107-,108-,109-,110-,111+,115+,116+,117-,118-,119+,120-,121-,122+,123-,124+,125+,126?,127+,128-,129+,130-,131+,132-,133+,134+,135+,136+,137-,138+,139-,140-,141-,142+,143-,144+,145-,146-,159+,160+,161+,162+,163+/m1/s1
InChI Key
BMUPKVLWWGQTIL-SFYWBPHXSA-N
Canonical SMILES
CCC(C)C(C(=O)NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC(=O)O)C(=O)NC(CC(C)C)C(=O)NC(C(C)O)C(=O)NC(CC1=CC=CC=C1)C(=O)NC(CC2=CNC=N2)C(=O)NC(CC(C)C)C(=O)NC(CC(C)C)C(=O)NC(CCCNC(=N)N)C(=O)NC(CCC(=O)O)C(=O)NC(C(C)C)C(=O)NC(CC(C)C)C(=O)NC(CCC(=O)O)C(=O)NC(CCSC)C(=O)NC(C(C)O)C(=O)NC(CCCCN)C(=O)NC(C)C(=O)NC(CC(=O)O)C(=O)NC(CCC(=O)N)C(=O)NC(CC(C)C)C(=O)NC(C)C(=O)NC(CCC(=O)N)C(=O)NC(CCC(=O)N)C(=O)NC(C)C(=O)NC(CC3=CNC=N3)C(=O)NC(CC(=O)N)C(=O)NC(CC(=O)N)C(=O)NC(CCCNC(=N)N)C(=O)NC(CCCCN)C(=O)NC(CC(C)C)C(=O)NC(CC(C)C)C(=O)NC(CC(=O)O)C(=O)NC(C(C)CC)C(=O)NC(C)C(=O)N)NC(=O)C4CCCN4C(=O)C5CCCN5C(=O)C(CCC(=O)O)NC(=O)C(CCC(=O)N)NC(=O)C(CO)N
1. beta-Lactotensin derived from bovine beta-lactoglobulin suppresses food intake via the CRF system followed by the CGRP system in mice
Kousaku Ohinata, Masaaki Yoshikawa, I-Ching Hou Peptides . 2009 Dec;30(12):2228-32. doi: 10.1016/j.peptides.2009.08.018.
We found that beta-lactotensin (His-Ile-Arg-Leu), which has been isolated as an ileum-contracting peptide from chymotrypsin digest of bovine beta-lactoglobulin, dose-dependently suppresses food intake after intracerebroventricular (i.c.v.) or intraperitoneal administration at a dose of 40 nmol/mouse or 100mg/kg, respectively, in fasted mice. Orally administered beta-lactotensin also suppressed food intake at 500 mg/kg. We previously reported that beta-lactotensin acts as an agonist for neurotensin receptors; however, the anorexigenic activity of beta-lactotensin was not inhibited by i.c.v. co-administration with SR48692 or levocabastine, an antagonist for neurotensin NT(1) or NT(2) receptor, respectively. On the other hand, the anorexigenic effect of beta-lactotensin was blocked by i.c.v. co-administration with astressin or calcitonin gene-related peptide (CGRP)(8-37), an antagonist for corticotropin releasing factor (CRF) or CGRP, respectively. beta-Lactotensin had affinity for neither CRF nor CGRP receptor. In addition, CRF-induced anorexigenic activity after i.c.v. administration was completely blocked by CGRP(8-37), while CGRP-induced anorexigenic activity was not inhibited by astressin. These results suggest that the CGRP system is activated downstream of the CRF system in food intake regulation. Taken together, beta-lactotensin may suppress food intake by activating the CRF system followed by the CGRP system, independently of the neurotensin system.
2. In vivo and in vitro comparisons of biological activities of bovine, ovine and rat CRF (corticotrophin-releasing factor)
Y Yasuda, M A Greer, N Yasuda, S Maruta, T Aizawa Acta Endocrinol (Copenh) . 1984 Jun;106(2):158-67. doi: 10.1530/acta.0.1060158.
The biological activity of partially purified bovine hypothalamic CRF (corticotrophin- releasing factor) was compared to those of synthetic CRFs (ovine, rat) sauvagine and vasopressin in vivo and in vitro. ACTH-primed hypophysectomized rats with heterotopically transplanted pituitaries and medial basal hypothalamic ablation (H-T + MBHA ), and intact rats pre-treated with chlorpromazine, morphine and Nembutal (C-M-N) were used for in vivo CRF assays. Perifused rat adenohypophyseal fragments were employed for in vitro studies. CRF-A (void volume fractions, 'big' CRF) and CRF-B (Kav = 0.583) purified from bovine hypophyseal stalk, synthetic ovine and rat CRF, and sauvagine all induced significant stimulation of ACTH and/or corticosterone secretion in these systems. Synthetic ovine and rat CRF and sauvagine showed comparable CRF potency. The CRF dose-response slopes for bovine CRF were somewhat steeper than those for ovine CRF or sauvagine in the in vitro system. Vasopressin had the least steep dose-response slope. Intravenous bolus administration of ovine CRF caused a more prolonged (greater than 20 min) elevation of plasma ACTH compared to a relatively short duration after bovine CRF-A. These data suggest that bovine hypothalamus contains substance(s) which exhibits different CRF characteristics from those of ovine CRF.
3. Dissociation of the adrenocorticotropin secretory responses to corticotropin-releasing factor (CRF) and vasopressin or oxytocin by using a specific cytotoxic analog of CRF
J Schwartz, W Vale Endocrinology . 1988 Apr;122(4):1695-700. doi: 10.1210/endo-122-4-1695.
Control of ACTH secretion in the pituitary in the absence of target cells for CRF, the most potent ACTH secretagogue, was studied in dissociated bovine anterior pituitary cells treated with a potent selective cytotoxin. The cytotoxin is a conjugate of the CRF analog [Nle21,38, Arg36]rat (r) CRF and the plant toxin gelonin. Dissociated bovine anterior pituitary cells were pretreated with vehicle, 2 nM ovine CRF, 2 nM cytotoxic conjugate, or unconjugated [Nle21,38,Arg36]rCRF and gelonin in amounts equivalent to that of 2 nM cytotoxic conjugate for 12 h, then extensively washed and cultured for 3 days before acute secretion experiments. Unstimulated ACTH secretion was similar in all groups. ACTH secretion in response to CRF was attenuated by pretreatment with the cytotoxic conjugate; CRF (2.5 nM)-stimulated secretion was 7.0, 6.3, and 2.8 times the unstimulated rate in cells pretreated with vehicle, 2 nM CRF, or 2 nM cytotoxic conjugate, respectively. Likewise, the ACTH secretory response to a cAMP analog was attenuated by pretreatment with the conjugate; 8-bromo-cAMP (10 mM)-stimulated secretion was 6.8, 7.1, and 3.3 times the unstimulated rate in cells pretreated with vehicle, CRF, or conjugate, respectively. In contrast, the ACTH responses to vasopressin (VP) or oxytocin (OR) remained intact. VP stimulated the ACTH secretion rate by 4.2, 4.0, and 3.5 times, respectively, in the three groups. OT stimulated the ACTH secretion rate by 2.7, 2.6, and 2.3 times in the three groups. Pretreatment with the conjugate attenuated the response to CRF and VP in combination by the same amount as it attenuated the response to CRF alone. The ACTH secretory responses in cells pretreated with unconjugated [Nle21,38,Arg36]rCRF and gelonin were not different from responses in cells pretreated with vehicle. These results suggest that there is a separate mechanism or cell type for OT- and VP-stimulated ACTH secretion distinct from that responsible for the action of CRF on pituitary cells.
Online Inquiry
Verification code
Inquiry Basket