Cryptdin related sequence peptide
Need Assistance?
  • US & Canada:
    +
  • UK: +

Cryptdin related sequence peptide

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Cryptdin related sequence peptide is an antibacterial peptide isolated from Mus musculus. It has activity against gram-positive bacteria and gram-negative bacteria.

Category
Functional Peptides
Catalog number
BAT-012830
Molecular Formula
C173H273N59O46S9
Molecular Weight
4203.98
Synonyms
Leu-Gln-Asp-Ala-Ala-Leu-Gly-Trp-Gly-Arg-Arg-Cys-Pro-Arg-Cys-Pro-Pro-Cys-Pro-Arg-Cys-Ser-Trp-Cys-Pro-Arg-Cys-Pro-Thr-Cys-Pro-Gly-Cys-Asn-Cys-Asn-Pro-Lys
Sequence
LQDAALGWGRRCPRCPPCPRCSWCPRCPTCPGCNCNPK
1. A family of defensin-like genes codes for diverse cysteine-rich peptides in mouse Paneth cells
K M Huttner, A J Ouellette Genomics. 1994 Nov 1;24(1):99-109. doi: 10.1006/geno.1994.1586.
Cryptdins constitute a diverse population of defensins in Paneth cells of intestinal crypts. In mice, certain intestinal mRNAs, termed "CRSIC" and "CRS4C," are considered to be cryptdin-related sequences, because their prepro-coding sequences are 94% identical to those of cryptdin-1 mRNA; however, their predicted products, which are cationic, cysteine-rich peptides are not defensins (A. J. Ouellette and J. C. Lualdi, J. Biol. Chem. 265: 9831-9837, 1990). Here we describe several mouse small intestinal mRNAs and genes that code for CRS4C prepropeptides. The 10-kDa deduced CRS4C proteins consist of a prepro sequence, potential monobasic or dibasic peptide cleavage sites, a predicted 3.7-kDa peptide that contains 7 [C]-[X]-[Y] repeats, and a C(N/K)CNPK carboxyl-terminal consensus sequence. In situ hybridization experiments showed that CRS4C mRNAs are found in Paneth cells of adult small bowel. The CRS4C genes closely resemble cryptdin genes, having a two-exon structure with highly conserved transcription start sites, intron-exon junctions, and a single intron of approximately 550 bp. Like the cryptdin genes, exon 1 of CRS4C genes consists of 5' untranslated sequences (UTS) and the prepro-coding region, and exon 2 codes for the predicted mature peptide and 3' UTS. Despite the similarity of first exons in CRS4C and cryptdin genes, their introns exhibit very little homology, and their second exons code for unrelated peptides. Analysis of introns suggests that the ancestral cryptdin and CRS4C genes may have diverged from a common ancestor in the distant past and expanded only recently. We speculate that the cryptdin/CRS genes evolved so that prepro regions encoded by exon 1 were conserved to allow the varied peptides coded by exon 2 to be directed into Paneth cell secretory granules.
2. A novel mouse gene family coding for cationic, cysteine-rich peptides. Regulation in small intestine and cells of myeloid origin
A J Ouellette, J C Lualdi J Biol Chem. 1990 Jun 15;265(17):9831-7.
Cryptdin is a Paneth cell corticostatin/defensin in the mouse small bowel. To help define the intestinal role of cryptdin, cryptdin-related sequence (CRS) mRNAs have been characterized with respect to developmental regulation, sequence homology, putative coding function, and occurrence in myeloid cells. Cryptdin, CRS1C, and CRS4C mRNAs are transcribed from separate genes, occur at equivalent abundance in small intestine, and appear in the small bowel in concert during the 2nd and 3rd weeks postpartum. Cryptdin and CRS1C mRNAs are not detectable in adult mouse bone marrow, but probes specific for the 5'- or the 3'-untranslated regions of CRS4C mRNA hybridize to a moderately abundant 1.05-kilobase bone marrow mRNA in contrast to a highly abundant 0.75-kilobase mRNA in small intestine. Nucleotide sequences corresponding to the deduced prepro-coding regions of cryptdin, CRS1C, and CRS4C mRNAs contain a highly conserved 200-base pair region of 92% sequence similarity (CSE.2), but the mRNAs are not homologous otherwise. The deduced CRS1C and CRS4C polypeptides are apparent precursors of secreted, cationic, proline- and cysteine-rich peptides that contain Cys-Pro-X repeats. Unlike cryptdin, however, the proposed CRS1C and CRS4C mature peptide regions lack the structural motif characteristic of defensins. Attempts to find homologies between the putative CRS peptides and existing protein sequences have been unsuccessful, leading us to speculate that CRS1C and CRS4C represent a new family of nondefensin antimicrobial peptides in the mouse small bowel.
3. Developmental regulation of cryptdin, a corticostatin/defensin precursor mRNA in mouse small intestinal crypt epithelium
A J Ouellette, R M Greco, M James, D Frederick, J Naftilan, J T Fallon J Cell Biol. 1989 May;108(5):1687-95. doi: 10.1083/jcb.108.5.1687.
Cryptdin mRNA codes for the apparent precursor to a corticostatin/defensin-related peptide that accumulates to high levels in mouse intestinal crypt epithelium during postnatal development. The primary structure, intestinal cell distribution, and developmental appearance of cryptdin mRNA have been determined. Cryptdin mRNA is 450-480 nucleotides long. Translation of the partial cryptdin cDNA sequence reveals a 70-amino acid open reading frame that includes 32 carboxy-terminal residues that align with those in the consensus sequence, C.CR...C....ER..G.C....CCR, which is a common feature of leukocyte defensins and lung corticostatins (Selsted, M. E., D. M. Brown, R. J. DeLange, S. S. L. Harwig, and R. I. Lehrer. 1985. J. Biol. Chem. 260:4579-4584; Zhu, Q., J. Hu, S. Mulay, F. Esch, S. Shimasaki, and S. Solomon. 1988. Proc. Natl. Acad. Sci. USA. 85:592-596). In situ hybridization of cryptdin cDNA to paraformaldehyde-fixed, frozen sections of adult jejunum and ileum showed intense and specific labeling of epithelial cells in the base of all crypts. Analysis of sections from suckling mice showed that cryptdin mRNA is detectable in 10-20% of crypts in 10-d-old mice, in approximately 80% of crypts in 16-d-old mice, and in all crypts of mice 20 d and older. During the fourth week, the sequence accumulates in crypts to the maximal adult level. Cryptdin mRNA content in adult small intestine is independent both of T cell involvement and luminal bacteria. The role of cryptdin in small bowel physiology remains to be determined: cryptdin may inhibit bacterial translocation, modulate intestinal hormone synthesis, influence hormonal sensitivity of the intestinal epithelium, or exhibit a multiplicity of related activities.
Online Inquiry
Verification code
Inquiry Basket