1.Gateways to clinical trials.
Tomillero A;Moral MA Methods Find Exp Clin Pharmacol. 2009 Sep;31(7):463-93.
Gateways to Clinical Trials is a guide to the most recent clinical trials in current literature and congresses. The data in the following tables has been retrieved from the Clinical Trials Knowledge Area of Prous Science Integrity, the drug discovery and development portal, http://integrity.prous.com. This issue focuses on the following selection of drugs: AAV1/SERCA2a, Abacavir sulfate/lamivudine, Adalimumab, Aliskiren fumarate, Ambrisentan, Aripiprazole, AT-7519, Atazanavir sulfate, Atomoxetine hydrochloride, Azacitidine, Azelnidipine; Besifloxacin hydrochloride, Bevacizumab, Bioabsorbable everolimus-eluting coronary stent, Bortezomib, Bosentan, Budesonide/formoterol fumarate; CAIV-T, Carisbamate, Casopitant mesylate, Certolizumab pegol, Cetuximab, Ciclesonide, Ciprofloxacin/dexamethasone, CTCE-9908; Dalcetrapib, Darunavir, Deferasirox, Desloratadine, Disitertide, Drotrecogin alfa (activated), DTA-H19, Duloxetine hydrochloride, Dutasteride; Ecogramostim, Efalizumab, Emtricitabine, Eribulin mesilate, Escitalopram oxalate, Eszopiclone, EUR-1008, Everolimus-eluting coronary stent, Exenatide; Fampridine, Fluticasone furoate, Formoterol fumarate/fluticasone propionate, Fosamprenavir calcium, Fulvestrant; Gabapentin enacarbil, GS-7904L; HPV-6/11/16/18, Human Secretin, Hydralazine hydrochloride/isosorbide dinitrate; Imatinib mesylate, Imexon, Inalimarev/Falimarev, Indacaterol, Indacaterol maleate, Inhalable human insulin, Insulin detemir, Insulin glargine, Ixabepilone; L-Alanosine, Lapatinib ditosylate, Lenalidomide, Levocetirizine dihydrochloride, Liraglutide, Lisdexamfetamine mesilate, Lopinavir, Loratadine/montelukast sodium, Lutropin alfa; MeNZB, Mepolizumab, Micafungin sodium, Morphine hydrochloride; Nabiximols, Nikkomycin Z; Olmesartan medoxomil, Omalizumab; Paclitaxel-eluting stent, Pegfilgrastim, Peginterferon alfa-2a, Peginterferon alfa-2b, Perifosine, PF-489791, Plitidepsin, Posaconazole, Pregabalin; QAX-576; Raltegravir potassium, Ramelteon, Rasagiline mesilate, Recombinant human relaxin H2, rhGAD65, Rivaroxaban, Rosuvastatin calcium, Rotigotine; Saxagliptin, SCH-530348, Sirolimus-eluting stent, SLIT-amikacin, Sorafenib, Sotrastaurin, SR-16234, Sulforaphane; Tadalafil, Tanespimycin, Tapentadol hydrochloride, Teriparatide, Tesofensine, Tiotropium bromide, Tipifarnib, Tirapazamine, TMC-207, Tocilizumab, Tolvaptan, Tosedostat, Treprostinil sodium; Ustekinumab; Varespladib methyl, Vicriviroc, Vildagliptin, Vildagliptin/metformin hydrochloride, Volociximab, Voriconazole; Ziconotide, Ziprasidone hydrochloride.
2.An antagonist of the chemokine receptor CXCR4 induces mitotic catastrophe in ovarian cancer cells.
Kwong J;Kulbe H;Wong D;Chakravarty P;Balkwill F Mol Cancer Ther. 2009 Jul;8(7):1893-905. doi: 10.1158/1535-7163.MCT-08-0966. Epub 2009 Jun 30.
The chemokine receptor CXCR4 is expressed by malignant cells in ovarian cancer and is implicated in their growth and spread. We report here a unique mechanism of action of a small peptide antagonist of CXCR4 on ovarian cancer cells: induction of cell death by mitotic catastrophe. CTCE-9908 inhibited ovarian cancer cell migration to CXCL12, but on longer incubation, caused cell death in CXCR4-positive cells. CTCE-9908 did not cause apoptosis or cellular senescence, but induced multinucleation, G(2)-M arrest, and abnormal mitosis in ovarian cancer cells. This suggests that cell death was caused by mitotic catastrophe. Using microarray and Western blot analysis, we showed that CTCE-9908 deregulated DNA damage checkpoint proteins and spindle assembly checkpoint proteins at G(2)-M phases of the cell cycle. Combination treatment of CTCE-9908 and the drug paclitaxel led to an additive cytotoxicity that also involved mitotic catastrophe. We conclude that CTCE-9908 has a unique mechanism of action in ovarian cancer cells that seems to be CXCR4 specific.
3.Chemotherapy induces adaptive drug resistance and metastatic potentials via phenotypic CXCR4-expressing cell state transition in ovarian cancer.
Lee HH;Bellat V;Law B PLoS One. 2017 Feb 14;12(2):e0171044. doi: 10.1371/journal.pone.0171044. eCollection 2017.
Ovarian cancer (OVC) patients who receive chemotherapy often acquire drug resistance within one year. This can lead to tumor reoccurrence and metastasis, the major causes of mortality. We report a transient increase of a small distinctive CXCR4High/CD24Low cancer stem cell population (CXCR4High) in A2780 and SKOV-3 OVC cell lines in response to cisplatin, doxorubicin, and paclitaxel, treatments. The withdrawal of the drug challenges reversed this cell-state transition. CXCR4High exhibits dormancy in drug resistance and mesenchymal-like invasion, migration, colonization, and tumor formation properties. The removal of this cell population from a doxorubicin-resistant A2780 lineage (A2780/ADR) recovered the sensitivity to drug treatments. A cytotoxic peptide (CXCR4-KLA) that can selectively target cell-surface CXCR4 receptor was further synthesized to investigate the therapeutic merits of targeting CXCR4High. This peptide was more potent than the conventional CXCR4 antagonists (AMD3100 and CTCE-9908) in eradicating the cancer stem cells. When used together with cytotoxic agents such as doxorubicin and cisplatin, the combined drug-peptide regimens exhibited a synergistic cell-killing effect on A2780, A2780/ADR, and SKOV-3.