Cyclo(-Gly-Arg-Gly-Asp-Ser-Pro)
Need Assistance?
  • US & Canada:
    +
  • UK: +

Cyclo(-Gly-Arg-Gly-Asp-Ser-Pro)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Cyclo(-Gly-Arg-Gly-Asp-Ser-Pro), a cyclic RGD peptide, stimulates the contraction of rat afferent arterioles and is used for targeted delivery of cisplatin. It inhibits the adhesion of mouse B16 melanoma cells to fibronectin coated wells.

Category
Peptide Inhibitors
Catalog number
BAT-014516
CAS number
135432-37-0
Molecular Formula
C22H35N9O9
Molecular Weight
569.58
IUPAC Name
2-[(3S,6S,12S,18S)-12-[3-(diaminomethylideneamino)propyl]-3-(hydroxymethyl)-2,5,8,11,14,17-hexaoxo-1,4,7,10,13,16-hexazabicyclo[16.3.0]henicosan-6-yl]acetic acid
Synonyms
cyclo[L-arginyl-glycyl-L-alpha-aspartyl-L-seryl-L-prolyl-glycyl]; c(GRGDSP)
Appearance
White Powder
Purity
≥90%
Density
1.7±0.1 g/cm3
Boiling Point
1042.5±75.0°C at 760 mmHg
Sequence
cyclo(GRGDSP)
Storage
Store at -20°C
Solubility
Soluble in Water
InChI
InChI=1S/C22H35N9O9/c23-22(24)25-5-1-3-11-18(37)26-8-16(34)29-12(7-17(35)36)19(38)30-13(10-32)21(40)31-6-2-4-14(31)20(39)27-9-15(33)28-11/h11-14,32H,1-10H2,(H,26,37)(H,27,39)(H,28,33)(H,29,34)(H,30,38)(H,35,36)(H4,23,24,25)/t11-,12-,13-,14-/m0/s1
InChI Key
SZWJVFDWSJILGP-XUXIUFHCSA-N
Canonical SMILES
C1CC2C(=O)NCC(=O)NC(C(=O)NCC(=O)NC(C(=O)NC(C(=O)N2C1)CO)CC(=O)O)CCCN=C(N)N
1. Modulation of vitronectin receptor-mediated osteoclast adhesion by Arg-Gly-Asp peptide analogs: a structure-function analysis
M A Horton, E L Dorey, S A Nesbitt, J Samanen, F E Ali, J M Stadel, A Nichols, R Greig, M H Helfrich J Bone Miner Res. 1993 Feb;8(2):239-47. doi: 10.1002/jbmr.5650080215.
This study details the investigation of induction of retractile shape change in the osteoclast through inhibition of adhesion between osteoclasts and matrix with (1) peptide analogs bearing an Arg-Gly-Asp (RGD) sequence, (2) antibodies to the integrin alpha V beta 3 vitronectin receptor, and (3) the RGD-containing snake venom peptide echistatin. Osteoclast retraction on dentin has been demonstrated for GRGDSP peptide, in contrast to the inactivity of the analog containing the conservative RGE sequence modification. An osteoclast adhesion assay employing rat or chick bone cells and serum-coated glass coverslips as substrate was developed for routine evaluation of inhibition of adhesion. Antibodies F4 and F11 to the beta 3 chain of rat vitronectin receptor were effective at submicromolar concentrations in rat osteoclasts (IC50 0.29 and 0.05 microM, respectively), whereas MAb 23C6 to human/chick vitronectin receptor was somewhat less effective against chick osteoclasts (IC50 1.6 microM). A rank order of RGD analog activity (mean IC50, microM) in the serum-coated glass adhesion assay was derived for the linear peptides GRGDSP (201 microM), GRGDTP (180 microM), Ac-RGDS-NH2 (84 microM), Ac-RGDV-NH2 (68 microM), RGDV (43 microM), GRGDS (38 microM), and RGDS (26 microM). The two most potent short peptides were the cyclic analog SK&F 106760 Ac-S,S-cyclo-(Cys-(N alpha Me)Arg-Gly-Asp-Pen)-NH2 (IC50 7.0 microM), and the Telios peptide H-Gly-S,S-cyclo-(Pen-Gly-Arg-Gly-Asp-Ser-Pro-Cys)-Ala-OH (IC50 6.6 microM). The snake venom peptide echistatin was the most potent substance evaluated in the serum-coated glass assay (IC50 0.78 nM) employing either rat or chick osteoclasts.(ABSTRACT TRUNCATED AT 250 WORDS)
2. Bioinspired thermoresponsive nanoscaled coatings: Tailor-made polymer brushes with bioconjugated arginine-glycine-aspartic acid-peptides
Ulla König, Evmorfia Psarra, Olga Guskova, Eva Bittrich, Klaus-Jochen Eichhorn, Martin Müller, Petra B Welzel, Manfred Stamm, Petra Uhlmann Biointerphases. 2018 May 18;13(2):021002. doi: 10.1116/1.5020129.
The development of bioengineered surface coatings with stimuli-responsive properties is beneficial for a number of biomedical applications. Environmentally responsive and switchable polymer brush systems have a great potential to create such smart biointerfaces. This study focuses on the bioconjugation of cell-instructive peptides, containing the arginine-glycine-aspartic acid tripeptide sequence (RGD motif), onto well-defined polymer brush films. Herein, the highly tailored end-grafted homo polymer brushes are either composed of the polyelectrolyte poly(acrylic) acid (PAA), providing the reactive carboxyl functionalities, or of the temperature-responsive poly(N-isopropylacrylamide) (PNIPAAm). Of particular interest is the preparation of grafted-to binary brushes using both polymers and their subsequent conversion to RGD-biofunctionalized PNIPAAm-PAA binary brushes by a carbodiimide conjugation method. The bioconjugation process of two linear RGD-peptides Gly-Arg-Gly-Asp-Ser and Gly-Arg-Gly-Asp-Ser-Pro-Lys and one cyclic RGD-peptide cyclo(Arg-Gly-Asp-D-Tyr-Lys) is comparatively investigated by complementary analysis methods. Both techniques, in situ attenuated total reflectance Fourier transform infrared spectroscopy measurements and the in situ spectroscopic ellipsometric analysis, describe changes of the brush surface properties due to biofunctionalization. Besides, the bound RGD-peptide amount is quantitatively evaluated by ellipsometry in comparison to high performance liquid chromatography analysis data. Additionally, molecular dynamic simulations of the RGD-peptides themselves allow a better understanding of the bioconjugation process depending on the peptide properties. The significant influence on the bioconjugation result can be derived, on the one hand, of the polymer brush composition, especially from the PNIPAAm content, and, on the other hand, of the peptide dimension and its reactivity.
3. Effect of conformation on the conversion of cyclo-(1,7)-Gly-Arg-Gly-Asp-Ser-Pro-Asp-Gly-OH to its cyclic imide degradation product
S J Bogdanowich-Knipp, S D Jois, T J Siahaan J Pept Res. 1999 Jul;54(1):43-53. doi: 10.1034/j.1399-3011.1999.00091.x.
The objective of this study was to explain the increased propensity for the conversion of cyclo-(1,7)-Gly-Arg-Gly-Asp-Ser-Pro-Asp-Gly-OH (1), a vitronectin-selective inhibitor, to its cyclic imide counterpart cyclo-(1,7)-Gly-Arg-Gly-Asu-Ser-Pro-Asp-Gly-OH (2). Therefore, we present the conformational analysis of peptides 1 and 2 by NMR and molecular dynamic simulations (MD). Several different NMR experiments, including COSY, COSY-Relay, HOHAHA, NOESY, ROESY, DQF-COSY and HMQC, were used to: (a) identify each proton in the peptides; (b) determine the sequential assignments; (c) determine the cis-trans isomerization of X-Pro peptide bond; and (d) measure the NH-HCalpha coupling constants. NOE- or ROE-constraints were used in the MD simulations and energy minimizations to determine the preferred conformations of cyclic peptides 1 and 2. Both cyclic peptides 1 and 2 have a stable solution conformation; MD simulations suggest that cyclic peptide 1 has a distorted type I beta-turn at Arg2-Gly3-Asp4-Ser5 and cyclic peptide 2 has a pseudo-type I beta-turn at Ser5-Pro6-Asp7-Gly1. A shift in position of the type I beta-turn at Arg2-Gly3-Asp4-Ser5 in peptide 1 to Ser5-Pro6-Asp7-Gly1 in peptide 2 occurs upon formation of the cyclic imide at the Asp4 residue. Although the secondary structure of cyclic peptide 1 is not conducive to succinimide formation, the reaction proceeds via neighbouring group catalysis by the Ser5 side chain. This mechanism is also supported by the intramolecular hydrogen bond network between the hydroxyl side chain and the backbone nitrogen of Ser5. Based on these results, the stability of Asp-containing peptides cannot be predicted by conformational analysis alone; the influence of anchimeric assistance by surrounding residues must also be considered.
Online Inquiry
Verification code
Inquiry Basket