1. Decoding type I and III interferon signalling during viral infection
Emily V Mesev, Robert A LeDesma, Alexander Ploss Nat Microbiol. 2019 Jun;4(6):914-924. doi: 10.1038/s41564-019-0421-x. Epub 2019 Apr 1.
Interferon (IFN)-mediated antiviral responses are central to host defence against viral infection. Despite the existence of at least 20 IFNs, there are only three known cell surface receptors. IFN signalling and viral evasion mechanisms form an immensely complex network that differs across species. In this Review, we begin by highlighting some of the advances that have been made towards understanding the complexity of differential IFN signalling inputs and outputs that contribute to antiviral defences. Next, we explore some of the ways viruses can interfere with, or circumvent, these defences. Lastly, we address the largely under-reviewed impact of IFN signalling on host tropism, and we offer perspectives on the future of research into IFN signalling complexity and viral evasion across species.
2. Bacterial Retrons Function In Anti-Phage Defense
Adi Millman, Aude Bernheim, Avigail Stokar-Avihail, Taya Fedorenko, Maya Voichek, Azita Leavitt, Yaara Oppenheimer-Shaanan, Rotem Sorek Cell. 2020 Dec 10;183(6):1551-1561.e12. doi: 10.1016/j.cell.2020.09.065. Epub 2020 Nov 5.
Retrons are bacterial genetic elements comprised of a reverse transcriptase (RT) and a non-coding RNA (ncRNA). The RT uses the ncRNA as template, generating a chimeric RNA/DNA molecule in which the RNA and DNA components are covalently linked. Although retrons were discovered three decades ago, their function remained unknown. We report that retrons function as anti-phage defense systems. The defensive unit is composed of three components: the RT, the ncRNA, and an effector protein. We examined multiple retron systems and show that they confer defense against a broad range of phages via abortive infection. Focusing on retron Ec48, we show evidence that it "guards" RecBCD, a complex with central anti-phage functions in bacteria. Inhibition of RecBCD by phage proteins activates the retron, leading to abortive infection and cell death. Thus, the Ec48 retron forms a second line of defense that is triggered if the first lines of defense have collapsed.
3. Lessons in self-defence: inhibition of virus entry by intrinsic immunity
Saliha Majdoul, Alex A Compton Nat Rev Immunol. 2022 Jun;22(6):339-352. doi: 10.1038/s41577-021-00626-8. Epub 2021 Oct 13.
Virus entry, consisting of attachment to and penetration into the host target cell, is the first step of the virus life cycle and is a critical 'do or die' event that governs virus emergence in host populations. Most antiviral vaccines induce neutralizing antibodies that prevent virus entry into cells. However, while the prevention of virus invasion by humoral immunity is well appreciated, considerably less is known about the immune defences present within cells (known as intrinsic immunity) that interfere with virus entry. The interferon-induced transmembrane (IFITM) proteins, known for inhibiting fusion between viral and cellular membranes, were once the only factors known to restrict virus entry. However, the progressive development of genetic and pharmacological screening platforms and the onset of the COVID-19 pandemic have galvanized interest in how viruses infiltrate cells and how cells defend against it. Several host factors with antiviral potential are now implicated in the regulation of virus entry, including cholesterol 25-hydroxylase (CH25H), lymphocyte antigen 6E (LY6E), nuclear receptor co-activator protein 7 (NCOA7), interferon-γ-inducible lysosomal thiol reductase (GILT), CD74 and ARFGAP with dual pleckstrin homology domain-containing protein 2 (ADAP2). This Review summarizes what is known and what remains to be understood about the intrinsic factors that form the first line of defence against virus infection.