Dermaseptin DRS-DI4-like peptide
Need Assistance?
  • US & Canada:
    +
  • UK: +

Dermaseptin DRS-DI4-like peptide

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Dermaseptin DRS-DI4-like peptide is an antibacterial peptide isolated from Phyllomedusa burmeisteri.

Category
Functional Peptides
Catalog number
BAT-012763
Molecular Formula
C127H219N35O32S
Molecular Weight
2780.3
Synonyms
Ala-Leu-Trp-Lys-Asn-Met-Leu-Lys-Gly-Ile-Gly-Lys-Leu-Ala-Gly-Gln-Ala-Ala-Leu-Gly-Ala-Val-Lys-Thr-Leu-Val-Gly-Ala
Purity
96.6%
Sequence
ALWKNMLKGIGKLAGQAALGAVKTLVGA
Storage
Store at -20°C
1. Biophysical investigation of the membrane-disrupting mechanism of the antimicrobial and amyloid-like peptide dermaseptin S9
Lucie Caillon, J Antoinette Killian, Olivier Lequin, Lucie Khemtémourian PLoS One. 2013 Oct 11;8(10):e75528. doi: 10.1371/journal.pone.0075528. eCollection 2013.
Dermaseptin S9 (Drs S9) is an atypical cationic antimicrobial peptide with a long hydrophobic core and with a propensity to form amyloid-like fibrils. Here we investigated its membrane interaction using a variety of biophysical techniques. Rather surprisingly, we found that Drs S9 induces efficient permeabilisation in zwitterionic phosphatidylcholine (PC) vesicles, but not in anionic phosphatidylglycerol (PG) vesicles. We also found that the peptide inserts more efficiently in PC than in PG monolayers. Therefore, electrostatic interactions between the cationic Drs S9 and anionic membranes cannot explain the selectivity of the peptide towards bacterial membranes. CD spectroscopy, electron microscopy and ThT fluorescence experiments showed that the peptide adopts slightly more β-sheet and has a higher tendency to form amyloid-like fibrils in the presence of PC membranes as compared to PG membranes. Thus, induction of leakage may be related to peptide aggregation. The use of a pre-incorporation protocol to reduce peptide/peptide interactions characteristic of aggregates in solution resulted in more α-helix formation and a more pronounced effect on the cooperativity of the gel-fluid lipid phase transition in all lipid systems tested. Calorimetric data together with (2)H- and (31)P-NMR experiments indicated that the peptide has a significant impact on the dynamic organization of lipid bilayers, albeit slightly less for zwitterionic than for anionic membranes. Taken together, our data suggest that in particular in membranes of zwitterionic lipids the peptide binds in an aggregated state resulting in membrane leakage. We propose that also the antimicrobial activity of Drs S9 may be a result of binding of the peptide in an aggregated state, but that specific binding and aggregation to bacterial membranes is regulated not by anionic lipids but by as yet unknown factors.
2. Schistosoma mansoni dermaseptin-like peptide: structural and functional characterization
Gerry A P Quinn, Raymond Heymans, Franchesca Rondaj, Chris Shaw, Marijke de Jong-Brink J Parasitol. 2005 Dec;91(6):1340-51. doi: 10.1645/GE-540R.1.
Analysis of the Schistosoma mansoni peptidome for immunomodulatory molecules by solvent extraction and reverse-phase HPLC revealed a 27-amino-acid residue peptide from an extract of cercariae. Using matrix-assisted, laser desorption-ionization, time-of-flight mass spectrometry, the peptide yielded a protonated molecular ion [M + H]+ of m/z 2789. The unequivocal sequence was deduced by automated Edman degradation as: DLWNSIKDMAAAAGRAALNAVTGMVNQ. The peptide exhibited an 80.76% identity with dermaseptin 3.1 from the leaf frog Agalychnis annae, and was therefore named Schistosoma mansoni dermaseptin-like peptide (SmDLP). Immunocytochemical staining using a primary antidermaseptin B2 antibody located SmDLP in acetabular glands of cercariae, in and around schistosomula, and in adult worms and their eggs. Dot-blotting confirmed its presence in extracts (cercariae and worms) and excretion/secretion (E/S) products (transforming cercariae and eggs). This was corroborated by use of a MALDI-ToF spectra database of E/S products from cercariae. Functional characterization of the peptide indicated that SmDLP had typical amphipathic antimicrobial peptide properties, i.e., the ability to lyse human erythrocytes causing a decrease in the levels of nitric oxide produced by monocytic cells. This last function strongly suggests that SmDLP plays a vital role in the parasite's immunoevasion strategy. The possibility that schistosomes acquired this gene from amphibians has been discussed by constructing a phylogenetic tree.
3. In Vitro and In Vivo Studies on the Antibacterial Activity and Safety of a New Antimicrobial Peptide Dermaseptin-AC
Jiajia Chen, Doudou Hao, Kai Mei, Xin Li, Tingting Li, Chengbang Ma, Xinping Xi, Lei Li, Lei Wang, Mei Zhou, Tianbao Chen, Jia Liu, Qing Wu Microbiol Spectr. 2021 Dec 22;9(3):e0131821. doi: 10.1128/Spectrum.01318-21. Epub 2021 Dec 15.
Antimicrobial resistance has been an increasing public health threat in recent years. Antimicrobial peptides are considered as potential drugs against drug-resistant bacteria because they are mainly broad-spectrum and are unlikely to cause resistance. In this study, a novel peptide was obtained from the skin secretion of Agalychnis callidryas using the "shotgun" cloning method. The amino acid sequence, molecular weight, and secondary structure of Dermaseptin-AC were determined. The in vitro antimicrobial activity, hemolysis, and cytotoxicity of Dermaseptin-AC were evaluated. MICs and minimum bactericidal concentrations (MBCs) of Dermaseptin-AC against seven different bacterial strains ranged between 2 ~ 4 μM and 2 ~ 8 μM. The HC50 (50% maximum hemolysis concentration) of Dermaseptin-AC against horse erythrocytes was 76.55 μM. The in vivo anti-MRSA effect was tested on immune-suppressed MRSA pneumonia in mice. Dermaseptin-AC showed anti-MRSA effects similar to the same dose of vancomycin (10 mg/kg body weight). Short-term (7 days of intraperitoneal injection, 10 mg/kg body weight) in vivo safety evaluation of Dermaseptin-AC was tested on mice. The survival rate during the 7-day injection was 80%. Dermaseptin-AC showed no obvious effect on the liver, heart, spleen, kidney, and blood, but did induce slight pulmonary congestion. The skin safety of Dermaseptin-AC was evaluated on wounds on the back skin of a rat, and no irritation was observed. IMPORTANCE In this study, we discovered a new antimicrobial peptide, Dermaseptin-AC, and studied its in vitro and in vivo antimicrobial activity. These studies provide some data for finding new antimicrobial peptides for overcoming antimicrobial resistance. Dermaseptin-AC showed strong broad-spectrum antibacterial activity and relatively low hemolysis, and was more cytotoxic to cancer cells than to normal cells. Dermaseptin-AC was active in vivo, and its anti-MRSA effect was similar to that of vancomycin when administered by intraperitoneal injection. Safety studies found that continuous injection of Dermaseptin-AC may cause mild pulmonary congestion, while there was no obvious irritation when it was applied to skin wounds. Chronic wounds are often accompanied by high bacterial burdens and, at the same time, antimicrobial resistance is more likely to occur during repeated infections and treatments. Therefore, developing Dermaseptin-AC to treat chronic wound infection may be an attractive choice.
Online Inquiry
Verification code
Inquiry Basket