1. Ab initio design of potent anti-MRSA peptides based on database filtering technology
Biswajit Mishra, Guangshun Wang J Am Chem Soc. 2012 Aug 1;134(30):12426-9. doi: 10.1021/ja305644e. Epub 2012 Jul 19.
To meet the challenge of antibiotic resistance worldwide, a new generation of antimicrobials must be developed. This communication demonstrates ab initio design of potent peptides against methicillin-resistant Staphylococcus aureus (MRSA). Our idea is that the peptide is very likely to be active when the most probable parameters are utilized in each step of the design. We derived the most probable parameters (e.g., amino acid composition, peptide hydrophobic content, and net charge) from the antimicrobial peptide database by developing a database filtering technology (DFT). Different from classic cationic antimicrobial peptides usually with high cationicity, DFTamP1, the first anti-MRSA peptide designed using this technology, is a short peptide with high hydrophobicity but low cationicity. Such a molecular design made the peptide highly potent. Indeed, the peptide caused bacterial surface damage and killed community-associated MRSA USA300 in 60 min. Structural determination of DFTamP1 by NMR spectroscopy revealed a broad hydrophobic surface, providing a basis for its potency against MRSA known to deploy positively charged moieties on the surface as a mechanism for resistance. Our ab initio design combined with database screening led to yet another peptide with enhanced potency. Because of the simple composition, short length, stability to proteases, and membrane targeting, the designed peptides are attractive leads for developing novel anti-MRSA therapeutics. Our database-derived design concept can be applied to the design of peptide mimicries to combat MRSA as well.
2. Small molecule mimics of DFTamP1, a database designed anti-Staphylococcal peptide
Yuxiang Dong, Tamara Lushnikova, Radha M Golla, Xiaofang Wang, Guangshun Wang Bioorg Med Chem. 2017 Feb 1;25(3):864-869. doi: 10.1016/j.bmc.2016.11.056. Epub 2016 Nov 30.
Antimicrobial peptides (AMPs) are important templates for developing new antimicrobial agents. Previously, we developed a database filtering technology that enabled us to design a potent anti-Staphylococcal peptide DFTamP1. Using this same design approach, we now report the discovery of a new class of bis-indole diimidazolines as AMP small molecule mimics. The best compound killed multiple S. aureus clinical strains in both planktonic and biofilm forms. The compound appeared to target bacterial membranes with antimicrobial activity and membrane permeation ability similar to daptomycin.