DL-Ala-Gly-OH
Need Assistance?
  • US & Canada:
    +
  • UK: +

DL-Ala-Gly-OH

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Others
Catalog number
BAT-004989
CAS number
1188-01-8
Molecular Formula
C5H10N2O3
Molecular Weight
146.15
DL-Ala-Gly-OH
IUPAC Name
2-(2-aminopropanoylamino)acetic acid
Synonyms
DL-Alanyl-glycine; 2-[(2-Aminopropanoyl)amino]acetic acid
Purity
≥ 99% (TLC)
Density
1.3394 g/cm3(rough estimate)
Melting Point
225 °C
Boiling Point
265.74°C (rough estimate)
Storage
Store at 2-8 °C
InChI
InChI=1S/C5H10N2O3/c1-3(6)5(10)7-2-4(8)9/h3H,2,6H2,1H3,(H,7,10)(H,8,9)
InChI Key
CXISPYVYMQWFLE-UHFFFAOYSA-N
Canonical SMILES
CC(C(=O)NCC(=O)O)N
1. In vitro stability and in vivo pharmacokinetic studies of a model opioid peptide, H-Tyr-D-Ala-Gly-Phe-D-Leu-OH (DADLE), and its cyclic prodrugs
Jerry Z Yang, Weiqing Chen, Ronald T Borchardt J Pharmacol Exp Ther. 2002 Nov;303(2):840-8. doi: 10.1124/jpet.102.037135.
In vitro stability and in vivo pharmacokinetic studies of a model opioid peptide, H-Tyr-D-Ala-Gly-Phe-D-Leu-OH (DADLE), and its cyclic prodrugs (acyloxyalkoxy-based cyclic prodrug of DADLE, coumarinic acid-based cyclic prodrug of DADLE, and oxymethyl-modified coumarinic acid-based cyclic prodrug of DADLE) were conducted. The enzymatic stability of DADLE and its prodrugs in various biological media was determined at 37 degrees C in the presence and absence of paraoxon, a known esterase inhibitor. The prodrugs exhibited metabolic stability to exo- and endopeptidases, and esterase-catalyzed bioconversion of the prodrugs to DADLE was observed. For pharmacokinetic studies in rats, various biological samples (blood, bile, urine, and brain) were collected after i.v. administration of DADLE and its prodrugs. The samples were analyzed by high-performance liquid chromatography with tandem mass spectrometric detection, and the conversion from the prodrugs to intermediates to DADLE was monitored. The prodrugs exhibited similar pharmacokinetic properties and showed improved stability compared with DADLE in rat blood. This increased stability led to higher plasma concentrations of DADLE after i.v. administration of the prodrugs compared with i.v. administration of DADLE alone. In terms of elimination pathways, metabolism by endopeptidases was the major route for DADLE elimination, whereas rapid biliary excretion was the major route of elimination for the prodrugs. The rapid elimination of the prodrugs by the liver and the formation of stable intermediates after esterase hydrolysis limited the bioconversion efficiencies of the prodrugs to DADLE after i.v. administration. The substrate activity of the prodrugs for efflux transporters (e.g., P-glycoprotein) in the blood-brain barrier significantly restricted their access to the brain.
2. Evaluation of the permeation characteristics of a model opioid peptide, H-Tyr-D-Ala-Gly-Phe-D-Leu-OH (DADLE), and its cyclic prodrugs across the blood-brain barrier using an in situ perfused rat brain model
Weiqing Chen, Jerry Z Yang, Rikke Andersen, Lisbeth H Nielsen, Ronald T Borchardt J Pharmacol Exp Ther. 2002 Nov;303(2):849-57. doi: 10.1124/jpet.102.037143.
The permeation characteristics of a model opioid peptide, H-Tyr-D-Ala-Gly-Phe-D-Leu-OH (DADLE), and its cyclic prodrugs [acyloxyalkoxy-based cyclic prodrug of DADLE (AOA-DADLE), coumarinic acid-based cyclic prodrug of DADLE (CA-DALE), and oxymethyl-modified coumarinic acid-based cyclic prodrug of DADLE (OMCA-DADLE)] across the blood-brain barrier (BBB) were determined using an in situ perfused rat brain model. The rat brains were perfused with Krebs-bicarbonate buffer containing test compounds in the absence or presence of a specific P-glycoprotein inhibitor (GF-120918). Brain samples were collected after perfusion and processed by a capillary depletion method. After liquid phase extraction with acetonitrile, samples were analyzed using high-performance liquid chromatography with tandem mass spectrometric detection. Linear uptake kinetics of DADLE and its cyclic prodrugs was observed within the range of 60 to 240 s of perfusion. The apparent permeability coefficient (P(app)) of DADLE across the BBB was very low (<10(-7) cm/s), probably due to its unfavorable physicochemical properties (e.g., charge, hydrophilicity, and high hydrogen-bonding potential). All three cyclic prodrugs, however, also exhibited low membrane permeation (P(app) <10(-7) cm/s) in spite of their more favorable physicochemical properties (e.g., no charge, high hydrophobicity, and low hydrogen-bonding potential). Inclusion of GF-120918 (10 microM) in the perfusates fully inhibited the P-gp activity in the BBB and dramatically increased the P(app) values of AOA-DADLE, CA-DADLE, and OMCA-DADLE by approximately 50-, 460-, and 170-fold, respectively. In contrast, GF-120918 had no effect on the P(app) value of DADLE. In addition, the observed bioconversions of the prodrugs to DADLE in the rat brains after 240-s perfusion were very low (5.1% from AOA-DADLE, 0.6% from CA-DADLE, and 0.2% from OMCA-DADLE), which was consistent with the in vitro bioconversion rates determined previously in rat brain homogenates.
Online Inquiry
Verification code
Inquiry Basket