1. Characterization of antibacterial COOH-terminal proenkephalin-A-derived peptides (PEAP) in infectious fluids. Importance of enkelytin, the antibacterial PEAP209-237 secreted by stimulated chromaffin cells
Y Goumon, K Lugardon, B Kieffer, J F Lefèvre, A Van Dorsselaer, D Aunis, M H Metz-Boutigue J Biol Chem. 1998 Nov 6;273(45):29847-56. doi: 10.1074/jbc.273.45.29847.
Proenkephalin-A (PEA) and its derived peptides (PEAP) have been described in neural, neuroendocrine tissues and immune cells. The processing of PEA has been extensively studied in the adrenal medulla chromaffin cell showing that maturation starts with the removal of the carboxyl-terminal PEAP209-239. In 1995, our laboratory has shown that antibacterial activity is present within the intragranular chromaffin granule matrix and in the extracellular medium following exocytosis. More recently, we have identified an intragranular peptide, named enkelytin, corresponding to the bisphosphorylated PEAP209-237, that inhibits the growth of Micrococcus luteus (Goumon, Y., Strub, J. M., Moniatte, M., Nullans, G., Poteur, L., Hubert, P., Van Dorsselaer, A., Aunis, D., and Metz-Boutigue, M. H. (1996) Eur. J. Biochem. 235, 516-525). As a continuation of this previous study, in order to characterize the biological function of antibacterial PEAP, we have here examined whether this COOH-terminal fragment is released from stimulated chromaffin cells and whether it could be detected in wound fluids and in polymorphonuclear secretions following cell stimulation. The antibacterial spectrum shows that enkelytin is active against several Gram-positive bacteria including Staphylococcus aureus, but it is unable to inhibit the Gram-negative bacteria growth. In order to relate the antibacterial activity of enkelytin with structural features, various synthetic enkelytin-derived peptides were tested. We also propose a computer model of synthetic PEAP209-237 deduced from 1H NMR analysis, in order to relate the antibacterial activity of enkelytin with the three-dimensional structure. Finally, we report the high phylogenetic conservation of the COOH-terminal PEAP, which implies some important biological function and we discuss the putative importance of enkelytin in the defensive processes.
2. Innate immunity: involvement of new neuropeptides
M H Metz-Boutigue, A E Kieffer, Y Goumon, D Aunis Trends Microbiol. 2003 Dec;11(12):585-92. doi: 10.1016/j.tim.2003.10.001.
Secretory granules of chromaffin cells from the adrenal medulla store catecholamines and a variety of peptides that are secreted in the extracellular medium during exocytosis. Among these fragments, several natural peptides displaying antimicrobial activities at the micromolar range have been isolated and characterized. We have shown that these peptides, derived from the natural processing of chromogranins (CGs), proenkephalin-A (PEA) and free ubiquitin (Ub), are released into the circulation and display antibacterial and antifungal activities. In this review we focus on three naturally secreted antimicrobial peptides corresponding to CGA1-76 (vasostatin-I), the bisphosphorylated form of PEA209-237 (enkelytin) and Ub. In addition, the antimicrobial properties of the synthetic active domains of vasostatin-I (CGA47-66 or chromofungin) and Ub (Ub65-76 or ubifungin) are reported.