1. Epinecidin-1, a highly potent marine antimicrobial peptide with anticancer and immunomodulatory activities
Alireza Neshani, Hosna Zare, Mohammad Reza Akbari Eidgahi, Azad Khaledi, Kiarash Ghazvini BMC Pharmacol Toxicol. 2019 May 28;20(1):33. doi: 10.1186/s40360-019-0309-7.
Background: Antibiotic-resistant pathogens are an emerging threat in this century. Epinecidin-1 is a multi-functional Antimicrobial Peptide (AMP) produced by Orange-spotted grouper (Epinephelus coioides) has been shown to have extensive potentials as an alternative for current antibiotics. Due to the huge costs for the study and the production of a new drug, if an antimicrobial peptide has other beneficial functions in addition to antimicrobial activities, it would be preferred. Methods: In this study, properties and applications of Epinecidin-1 were investigated and addressed comprehensively. To achieve this, the Google Scholar search engine and three databases of PubMed, Scopus, and Web of Science were used. Results: Epinecidin-1 is a cationic AMP with an alpha-helical structure. Seven functional usages of this peptide have been reported in the literature including antibacterial, antifungal, antiviral, antiprotozoal, anticancer, immunomodulatory, and wound healing properties. Moreover, this peptide has high potential to be used as an active ingredient in cleaning solutions as well as application in vaccine production. Conclusion: Due to significant antimicrobial activities tested on bacteria such as Staphylococcus aureus and Helicobacter pylori and also wound healing properties, Epi-1 has high potential to be considered as an important candidate for the production of new drugs and treatment of various infections including diabetic foot ulcer and peptic ulcer. Moreover, adjuvant-like properties of Epi-1 make it a suitable candidate for the studies related to an adjuvant. Other attractive properties such as anticancer effects have also been reported for this peptide which encourages further studies on this peptide.
2. Antimicrobial Peptide Epinecidin-1 Modulates MyD88 Protein Levels via the Proteasome Degradation Pathway
Bor-Chyuan Su, Jyh-Yih Chen Mar Drugs. 2017 Nov 16;15(11):362. doi: 10.3390/md15110362.
The cationic antimicrobial peptide epinecidin-1 was identified from Epinephelus coioides and possesses multiple biological functions, including antibacterial, antifungal, anti-tumor, and immunomodulatory effects. In addition, epinecidin-1 suppresses lipopolysaccharide (LPS)-induced inflammation by neutralizing LPS and ameliorating LPS/Toll-like receptor (TLR)-4 internalization. However, it is unclear whether the actions of epinecidin-1 depend on the regulation of TLR adaptor protein MyD88 or endogenous TLR signaling antagonists, which include A20, interleukin-1 receptor associated kinase (IRAK)-M, and suppressor of cytokine signaling (SOCS)-1. Our results demonstrate that epinecidin-1 alone does not affect A20, IRAK-M, or SOCS-1 protein levels. However, pre-incubation of epinecidin-1 significantly inhibits LPS-induced upregulation of A20, IRAK-M, and SOCS-1. In addition, epinecidin-1 significantly reduces the abundance of MyD88 protein. Both MG132 (a specific proteasome inhibitor) and Heclin (a specific Smurf E3 ligase inhibitor) are able to abolish epinecidin-1-mediated MyD88 degradation. Thus, our data suggest that epinecidin-1 directly inhibits MyD88 via induction of the Smurf E3 ligase proteasome pathway.
3. Epinecidin-1, an Antimicrobial Peptide Derived From Grouper ( Epinephelus coioides): Pharmacological Activities and Applications
Pui Ying Chee, Morokot Mang, Ern Sher Lau, Loh Teng-Hern Tan, Ya-Wen He, Wai-Leng Lee, Priyia Pusparajah, Kok-Gan Chan, Learn-Han Lee, Bey-Hing Goh Front Microbiol. 2019 Nov 20;10:2631. doi: 10.3389/fmicb.2019.02631. eCollection 2019.
Epinecidin-1 is an antimicrobial peptide derived from the orange-spotted grouper (Epinephelus coioides). The mature epinecidin-1 peptide is predicted to have an amphipathic α-helical structure and a non-helical hydrophilic domain at the C-terminal RRRH. The majority of work studying the potential pharmacological activities of epinecidin-1, utilize synthesized epinecidin-1 (Epi-1), which is made up of 21 amino acids, from the amino acid sequence of 22-42 residues of Epi-1-GFIFHIIKGLFHAGKMIHGLV. The synthetized Epi-1 peptide has been demonstrated to possess diverse pharmacological activities, including antimicrobial, immunomodulatory, anticancer, and wound healing properties. It has also been utilized in different clinical and agricultural fields, including topical applications in wound healing therapy as well as the enhancement of fish immunity in aquaculture. Hence, the present work aims to consolidate the current knowledge and findings on the characteristics and pharmacological properties of epinecidin-1 and its potential applications.