1. Protein S is a cofactor for tissue factor pathway inhibitor
J Rosing, L F A Maurissen, S N Tchaikovski, G Tans, T M Hackeng Thromb Res. 2008;122 Suppl 1:S60-3. doi: 10.1016/S0049-3848(08)70021-5.
Protein S is a vitamin K-dependent protein that acts as a cofactor of the anticoagulant protein APC. However, protein S also exhibits anticoagulant activity in the absence of APC. Thrombin generation experiments in normal plasma and in plasma deficient in tissue factor pathway inhibitor (TFPI) and/or protein S demonstrated that protein S stimulates the inhibition of TF by TFPI. Kinetic analysis in model systems containing purified proteins showed that protein S enhances the formation of the binary FXa:TFPI complex by reducing the Ki of TFPI from approximately 4 nM to approximately 0.5 nM. Enhancement of inhibitory activity of TFPI by protein S is only observed with full-length TFPI and in the presence of a negatively charged phospholipid surface. The Ki decrease brings the TFPI concentration necessary for FXa:TFPI complex formation within range of the plasma TFPI concentration which increases FXa:TFPI complex formation and accelerates feedback inhibition of the TF pathway by enhancing the formation of the quaternary TFPI:FXa:TF:FVIIa complex. Thus, protein S is not only a cofactor of APC, but also of TFPI. A reduced TFPI cofactor activity may contribute to the increased risk of venous thrombosis in protein-S deficient individuals. Using calibrated automated thrombography we have developed two assays that enable quantification of the functional activity of the TFPI/protein S system in plasma. These assays show that the activity of the TFPI/protein S system is greatly impaired in oral contraceptive users.
2. Mitochondria-targeting sequence, a multi-role sorting sequence recognized at all steps of protein import into mitochondria
T Omura J Biochem. 1998 Jun;123(6):1010-6. doi: 10.1093/oxfordjournals.jbchem.a022036.
The intracellular sorting of newly synthesized precursor proteins (preproteins) to mitochondria depends on the "mitochondria-targeting sequence" (MTS), which is located at the amino termini of the preproteins. MTS is required, however, not only for targeting newly synthesized preproteins to mitochondria, but also for all the following steps along the mitochondrial protein import pathway. MTS of nascent preproteins is first recognized by a cytoplasmic molecular chaperone, MSF, and then by Tom70 and Tom20 of the mitochondrial outer membrane receptor complex, Tom5 and Tom40 of the outer membrane protein translocation machinery, Tim23 of the inner membrane protein translocation machinery, and finally the processing peptidase, MPP, in the matrix. MTS is a multi-role sorting sequence which specifically interacts with various components along the mitochondrial protein import pathway. Recognition of MTS at multiple steps during the import of preproteins may contribute to the strict sorting of proteins destined for mitochondria.
3. Protein S and C4b-binding protein: components involved in the regulation of the protein C anticoagulant system
B Dahlbäck Thromb Haemost. 1991 Jul 12;66(1):49-61.
The protein C anticoagulant system provides important control of the blood coagulation cascade. The key protein is protein C, a vitamin K-dependent zymogen which is activated to a serine protease by the thrombin-thrombomodulin complex on endothelial cells. Activated protein C functions by degrading the phospholipid-bound coagulation factors Va and VIIIa. Protein S is a cofactor in these reactions. It is a vitamin K-dependent protein with multiple domains. From the N-terminal it contains a vitamin K-dependent domain, a thrombin-sensitive region, four EGF) epidermal growth factor (EGF)-like domains and a C-terminal region homologous to the androgen binding proteins. Three different types of post-translationally modified amino acid residues are found in protein S, 11 gamma-carboxy glutamic acid residues in the vitamin K-dependent domain, a beta-hydroxylated aspartic acid in the first EGF-like domain and a beta-hydroxylated asparagine in each of the other three EGF-like domains. The EGF-like domains contain very high affinity calcium binding sites, and calcium plays a structural and stabilising role. The importance of the anticoagulant properties of protein S is illustrated by the high incidence of thrombo-embolic events in individuals with heterozygous deficiency. Anticoagulation may not be the sole function of protein S, since both in vivo and in vitro, it forms a high affinity non-covalent complex with one of the regulatory proteins in the complement system, the C4b-binding protein (C4BP). The complexed form of protein S has no APC cofactor function. C4BP is a high molecular weight multimeric protein with a unique octopus-like structure. It is composed of seven identical alpha-chains and one beta-chain. The alpha- and beta-chains are linked by disulphide bridges. The cDNA cloning of the beta-chain showed the alpha- and beta-chains to be homologous and of common evolutionary origin. Both subunits are composed of multiple 60 amino acid long repeats (short complement or consensus repeats, SCR) and their genes are located in close proximity on chromosome 1, band 1q32. Available experimental data suggest the beta-chain to contain the single protein S binding site on C4BP, whereas each of the alpha-chains contains a binding site for the complement protein, C4b. As C4BP lacking the beta-chain is unable to bind protein S, the beta-chain is required for protein S binding, but not for the assembly of the alpha-chains during biosynthesis.(ABSTRACT TRUNCATED AT 400 WORDS)