Fmoc-Asn-OtBu
Need Assistance?
  • US & Canada:
    +
  • UK: +

Fmoc-Asn-OtBu

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Fmoc-Amino Acids
Catalog number
BAT-001912
CAS number
152781-25-4
Molecular Formula
C23H26N2O5
Molecular Weight
410.5
IUPAC Name
tert-butyl (2S)-4-amino-2-(9H-fluoren-9-ylmethoxycarbonylamino)-4-oxobutanoate
Density
1.225±0.06 g/cm3
Boiling Point
648.4±55.0 °C(Predicted)
InChI
InChI=1S/C23H26N2O5/c1-23(2,3)30-21(27)19(12-20(24)26)25-22(28)29-13-18-16-10-6-4-8-14(16)15-9-5-7-11-17(15)18/h4-11,18-19H,12-13H2,1-3H3,(H2,24,26)(H,25,28)/t19-/m0/s1
InChI Key
LXTHDMGKTOELQD-IBGZPJMESA-N
Canonical SMILES
CC(C)(C)OC(=O)C(CC(=O)N)NC(=O)OCC1C2=CC=CC=C2C3=CC=CC=C13

Fmoc-Asn-OtBu, a protected amino acid derivative utilized in peptide synthesis, finds diverse applications in various fields. Here are four key applications of Fmoc-Asn-OtBu, presented with high perplexity and burstiness:

Solid-Phase Peptide Synthesis (SPPS):Serving as a cornerstone in SPPS, Fmoc-Asn-OtBu plays a pivotal role in the seamless construction of peptides and small proteins. The Fmoc group strategically shields the amino terminal, enabling the sequential addition of other amino acids while preventing undesirable side reactions. Meanwhile, the tert-butyl (OtBu) group safeguards the asparagine side chain, ensuring the accurate synthesis of intricate peptides with precision.

Pharmaceutical Development:Within the pharmaceutical realm, Fmoc-Asn-OtBu emerges as a critical component for crafting bioactive peptides with therapeutic potential. Its significance lies in the creation of peptide-based drugs targeting a myriad of ailments such as cancer, diabetes, and infectious diseases. The precise incorporation of asparagine residues is paramount for upholding the biological activity and stability of these peptides, heralding a new era in drug discovery and development.

Synthetic Biology:Venturing into the realm of synthetic biology, Fmoc-Asn-OtBu propels the innovation of novel peptide-based biomaterials and structures. These engineered peptides metamorphose into functional biomaterials endowed with desired mechanical, chemical and biological properties, ideal for applications in tissue engineering and drug delivery. The meticulous manipulation of peptide structure facilitated by Fmoc-Asn-OtBu serves as the linchpin for spearheading the development of cutting-edge biological materials that push boundaries and redefine possibilities.

Protein Engineering:In the domain of protein engineering, researchers harness the power of Fmoc-Asn-OtBu to synthesize peptide fragments that unravel the mysteries of protein folding, stability, and function. By strategically integrating asparagine residues at specific junctures, scientists introduce targeted modifications and dissect their impact on protein behavior. This methodology plays a pivotal role in the design and creation of proteins imbued with enhanced properties and functionalities, setting the stage for groundbreaking advancements in therapeutic and industrial applications.

1. Synthesis of complex head-to-side-chain cyclodepsipeptides
Marta Pelay-Gimeno, Fernando Albericio, Judit Tulla-Puche Nat Protoc. 2016 Oct;11(10):1924-1947. doi: 10.1038/nprot.2016.116. Epub 2016 Sep 15.
Cyclodepsipeptides are cyclic peptides in which at least one amide link on the backbone is replaced with an ester link. These natural products present a high structural diversity that corresponds to a broad range of biological activities. Therefore, they are very promising pharmaceutical candidates. Most of the cyclodepsipeptides have been isolated from marine organisms, but they can also originate from terrestrial sources. Within the family of cyclodepsipeptides, 'head-to-side-chain' cyclodepsipeptides have, in addition to the macrocyclic core closed by the ester bond, an arm terminated with a polyketide moiety or a branched amino acid, which makes their synthesis a challenge. This protocol provides guidelines for the synthesis of 'head-to-side-chain cyclodepsipeptides' and includes-as an example-a detailed procedure for preparing pipecolidepsin A. Pipecolidepsin was chosen because it is a very complex 'head-to-side-chain cyclodepsipeptide' of marine origin that shows cytotoxicity in several human cancer cell lines. The procedure begins with the synthesis of the noncommercial protected amino acids (2R,3R,4R)-2-{[(9H-fluoren-9-yl)methoxy]carbonylamino}-3-hydroxy-4,5-dimethylhexanoic acid (Fmoc-AHDMHA-OH), Alloc-pipecolic-OH, (4R,5R)-5-((((9H-fluoren-9-yl)methoxy)carbonylamino)-4-oxo-4-(tritylamino)butyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylic acid (Fmoc-DADHOHA(acetonide, Trt))-OH and the pseudodipeptide (2R,3R,4R)-3-hydroxy-2,4,6-trimethylheptanoic acid ((HTMHA)-D-Asp(OtBu)-OH). It details the assembly of the depsipeptidic skeleton using a fully solid-phase approach (typically on an amino polystyrene resin coupled to 3-(4-hydroxymethylphenoxy)propionic acid (AB linker)), including the key ester formation step. It concludes by describing the macrocyclization step performed on solid phase, and the global deprotection and cleavage of the cyclodepsipeptide from the resin using a trifluoroacetic acid-H2O-triisopropylsilane (TFA-H2O-TIS; 95:2.5:2.5) cocktail, as well as the final purification by semipreparative HPLC. The entire procedure takes ~2 months to complete.
2. New t-butyl based aspartate protecting groups preventing aspartimide formation in Fmoc SPPS
Raymond Behrendt, Simon Huber, Roger Martí, Peter White J Pept Sci. 2015 Aug;21(8):680-7. doi: 10.1002/psc.2790. Epub 2015 Jun 15.
Obtaining homogenous aspartyl-containing peptides via Fmoc/tBu chemistry is often an insurmountable obstacle. A generic solution for this issue utilising an optimised side-chain protection strategy that minimises aspartimide formation would therefore be most desirable. To this end, we developed the following new derivatives: Fmoc-Asp(OEpe)-OH (Epe = 3-ethyl-3-pentyl), Fmoc-Asp(OPhp)-OH (Php = 4-n-propyl-4-heptyl) and Fmoc-Asp(OBno)-OH (Bno = 5-n-butyl-5-nonyl). We have compared their effectiveness against that of Fmoc-Asp(OtBu)-OH and Fmoc-Asp(OMpe)-OH in the well-established scorpion toxin II model peptide variants H-Val-Lys-Asp-Asn/Arg-Tyr-Ile-OH by treatments of the peptidyl resins with the Fmoc removal reagents containing piperidine and DBU at both room and elevated temperatures. The new derivatives proved to be extremely effective in minimising aspartimide by-products in each application.
3. Solid-Phase Total Synthesis of Bacitracin A
Jinho Lee, John H. Griffin, Thalia I. Nicas J Org Chem. 1996 Jun 14;61(12):3983-3986. doi: 10.1021/jo960580b.
An efficient solid-phase method for the total synthesis of bacitracin A is reported. This work was undertaken in order to provide a general means of probing the intriguing mode of action of the bacitracins and exploring their potential for use against emerging drug-resistant pathogens. The synthetic approach to bacitracin A involves three key features: (1) linkage to the solid support through the side chain of the L-asparaginyl residue at position 12 (L-Asn(12)), (2) cyclization through amide bond formation between the alpha-carboxyl of L-Asn(12) and the side chain amino group of L-Lys(8), and (3) postcyclization addition of the N-terminal thiazoline dipeptide as a single unit. To initiate the synthesis, Fmoc L-Asp(OH)-OAllyl was attached to a PAL resin. The chain of bacitracin A was elaborated in the C-to-N direction by sequential piperidine deprotection/HBTU-mediated coupling cycles with Fmoc D-Asp(OtBu)-OH, Fmoc L-His(Trt)-OH, Fmoc D-Phe-OH, Fmoc L-Ile-OH, Fmoc D-Orn(Boc)-OH, Fmoc L-Lys(Aloc)-OH, Fmoc L-Ile-OH, Fmoc D-Glu(OtBu)-OH, and Fmoc L-Leu-OH. The allyl ester and allyl carbamate protecting groups of L-Asn(12) and L-Lys(8), respectively, were simultaneously and selectively removed by treating the peptide-resin with palladium tetrakis(triphenylphosphine), acetic acid, and triethylamine. Cyclization was effected by PyBOP/HOBT under the pseudo high-dilution conditions afforded by attachment to the solid support. After removal of the N-terminal Fmoc group, the cyclized peptide was coupled with 2-[1'(S)-(tert-butyloxycarbonylamino)-2'(R)-methylbutyl]-4(R)-carboxy-Delta(2)-thiazoline (1). The synthetic peptide was deprotected and cleaved from the solid support under acidic conditions and then purified by reverse-phase HPLC. The synthetic material exhibited an ion in the FAB-MS at m/z 1422.7, consistent with the molecular weight calculated for the parent ion of bacitracin A (MH(+) = C(73)H(84)N(10)O(23)Cl(2), 1422.7 g/mol). It was also indistinguishable from authentic bacitracin A by high-field (1)H NMR and displayed antibacterial activity equal to that of the natural product, thus confirming its identity as bacitracin A. The overall yield for the solid-phase synthesis was 24%.
Online Inquiry
Verification code
Inquiry Basket