Fmoc-nAsp(OtBu)-OH
Need Assistance?
  • US & Canada:
    +
  • UK: +

Fmoc-nAsp(OtBu)-OH

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
BOC-Amino Acids
Catalog number
BAT-008888
CAS number
141743-16-0
Molecular Formula
C23H25NO6
Molecular Weight
411.4
Fmoc-nAsp(OtBu)-OH
IUPAC Name
2-[9H-fluoren-9-ylmethoxycarbonyl-[2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]amino]acetic acid
Synonyms
Fmoc-N(EtO2H)Gly-OtBu; Fmoc-N-(tert-butyloxycarbonylmethyl)glycine; Fmoc-N-(tert-butyloxycarbonylmethyl)-glycine
Appearance
White crystalline powder
Purity
≥ 98% (HPLC)
Melting Point
115-120 °C
InChI
InChI=1S/C23H25NO6/c1-23(2,3)30-21(27)13-24(12-20(25)26)22(28)29-14-19-17-10-6-4-8-15(17)16-9-5-7-11-18(16)19/h4-11,19H,12-14H2,1-3H3,(H,25,26)
InChI Key
FZHJLRKZIINJMC-UHFFFAOYSA-N
Canonical SMILES
CC(C)(C)OC(=O)CN(CC(=O)O)C(=O)OCC1C2=CC=CC=C2C3=CC=CC=C13

Fmoc-nAsp(OtBu)-OH, also recognized as Fmoc-N-α-Boc-Aspartic Acid, plays a pivotal role in peptide synthesis and various biochemical endeavors. Here are four key applications of Fmoc-nAsp(OtBu)-OH conveyed with heightened perplexity and burstiness:

Peptide Synthesis: Central to solid-phase peptide synthesis, Fmoc-nAsp(OtBu)-OH serves as a fundamental building block. Its protected side chain shields against undesired reactions throughout peptide elongation, guaranteeing the resulting peptides’ precise sequence and structure. This integrity is imperative for their biological efficacy, ensuring accurate molecular performance.

Pharmaceutical Development: In the realm of peptide-based drug innovation, Fmoc-nAsp(OtBu)-OH is instrumental in sculpting peptides endowed with specific biological functionalities. By integrating this amino acid into peptide sequences, researchers can craft molecules that mirror the attributes of natural peptides, potentially spearheading novel therapeutic solutions. This holds particular significance in designing enzyme inhibitors and receptor agonists.

Structural Biology: Esteemed by researchers in the domain of structural biology, Fmoc-nAsp(OtBu)-OH is employed to synthesize peptides tailored for structural exploration. These peptides can be meticulously designed to imitate protein domains or epitopes, facilitating their application in crystallization and NMR analyses. This aids in deciphering proteins’ three-dimensional configurations and unraveling their molecular functionalities at a granular level, enriching our comprehension of biological mechanisms.

Bioconjugation: Harnessing the power of bioconjugation, Fmoc-nAsp(OtBu)-OH emerges as a key player in linking peptides to diverse biomolecules or surfaces. This process underpins the creation of functionalized biomaterials, biosensors, and advanced drug delivery systems. By introducing targeted functional groups through this amino acid, the adaptability and utility spectrum of synthetic peptides are expanded.

1. Synthesis of complex head-to-side-chain cyclodepsipeptides
Marta Pelay-Gimeno, Fernando Albericio, Judit Tulla-Puche Nat Protoc. 2016 Oct;11(10):1924-1947. doi: 10.1038/nprot.2016.116. Epub 2016 Sep 15.
Cyclodepsipeptides are cyclic peptides in which at least one amide link on the backbone is replaced with an ester link. These natural products present a high structural diversity that corresponds to a broad range of biological activities. Therefore, they are very promising pharmaceutical candidates. Most of the cyclodepsipeptides have been isolated from marine organisms, but they can also originate from terrestrial sources. Within the family of cyclodepsipeptides, 'head-to-side-chain' cyclodepsipeptides have, in addition to the macrocyclic core closed by the ester bond, an arm terminated with a polyketide moiety or a branched amino acid, which makes their synthesis a challenge. This protocol provides guidelines for the synthesis of 'head-to-side-chain cyclodepsipeptides' and includes-as an example-a detailed procedure for preparing pipecolidepsin A. Pipecolidepsin was chosen because it is a very complex 'head-to-side-chain cyclodepsipeptide' of marine origin that shows cytotoxicity in several human cancer cell lines. The procedure begins with the synthesis of the noncommercial protected amino acids (2R,3R,4R)-2-{[(9H-fluoren-9-yl)methoxy]carbonylamino}-3-hydroxy-4,5-dimethylhexanoic acid (Fmoc-AHDMHA-OH), Alloc-pipecolic-OH, (4R,5R)-5-((((9H-fluoren-9-yl)methoxy)carbonylamino)-4-oxo-4-(tritylamino)butyl)-2,2-dimethyl-1,3-dioxolane-4-carboxylic acid (Fmoc-DADHOHA(acetonide, Trt))-OH and the pseudodipeptide (2R,3R,4R)-3-hydroxy-2,4,6-trimethylheptanoic acid ((HTMHA)-D-Asp(OtBu)-OH). It details the assembly of the depsipeptidic skeleton using a fully solid-phase approach (typically on an amino polystyrene resin coupled to 3-(4-hydroxymethylphenoxy)propionic acid (AB linker)), including the key ester formation step. It concludes by describing the macrocyclization step performed on solid phase, and the global deprotection and cleavage of the cyclodepsipeptide from the resin using a trifluoroacetic acid-H2O-triisopropylsilane (TFA-H2O-TIS; 95:2.5:2.5) cocktail, as well as the final purification by semipreparative HPLC. The entire procedure takes ~2 months to complete.
2. Solid-Phase Total Synthesis of Bacitracin A
Jinho Lee, John H. Griffin, Thalia I. Nicas J Org Chem. 1996 Jun 14;61(12):3983-3986. doi: 10.1021/jo960580b.
An efficient solid-phase method for the total synthesis of bacitracin A is reported. This work was undertaken in order to provide a general means of probing the intriguing mode of action of the bacitracins and exploring their potential for use against emerging drug-resistant pathogens. The synthetic approach to bacitracin A involves three key features: (1) linkage to the solid support through the side chain of the L-asparaginyl residue at position 12 (L-Asn(12)), (2) cyclization through amide bond formation between the alpha-carboxyl of L-Asn(12) and the side chain amino group of L-Lys(8), and (3) postcyclization addition of the N-terminal thiazoline dipeptide as a single unit. To initiate the synthesis, Fmoc L-Asp(OH)-OAllyl was attached to a PAL resin. The chain of bacitracin A was elaborated in the C-to-N direction by sequential piperidine deprotection/HBTU-mediated coupling cycles with Fmoc D-Asp(OtBu)-OH, Fmoc L-His(Trt)-OH, Fmoc D-Phe-OH, Fmoc L-Ile-OH, Fmoc D-Orn(Boc)-OH, Fmoc L-Lys(Aloc)-OH, Fmoc L-Ile-OH, Fmoc D-Glu(OtBu)-OH, and Fmoc L-Leu-OH. The allyl ester and allyl carbamate protecting groups of L-Asn(12) and L-Lys(8), respectively, were simultaneously and selectively removed by treating the peptide-resin with palladium tetrakis(triphenylphosphine), acetic acid, and triethylamine. Cyclization was effected by PyBOP/HOBT under the pseudo high-dilution conditions afforded by attachment to the solid support. After removal of the N-terminal Fmoc group, the cyclized peptide was coupled with 2-[1'(S)-(tert-butyloxycarbonylamino)-2'(R)-methylbutyl]-4(R)-carboxy-Delta(2)-thiazoline (1). The synthetic peptide was deprotected and cleaved from the solid support under acidic conditions and then purified by reverse-phase HPLC. The synthetic material exhibited an ion in the FAB-MS at m/z 1422.7, consistent with the molecular weight calculated for the parent ion of bacitracin A (MH(+) = C(73)H(84)N(10)O(23)Cl(2), 1422.7 g/mol). It was also indistinguishable from authentic bacitracin A by high-field (1)H NMR and displayed antibacterial activity equal to that of the natural product, thus confirming its identity as bacitracin A. The overall yield for the solid-phase synthesis was 24%.
3. New t-butyl based aspartate protecting groups preventing aspartimide formation in Fmoc SPPS
Raymond Behrendt, Simon Huber, Roger Martí, Peter White J Pept Sci. 2015 Aug;21(8):680-7. doi: 10.1002/psc.2790. Epub 2015 Jun 15.
Obtaining homogenous aspartyl-containing peptides via Fmoc/tBu chemistry is often an insurmountable obstacle. A generic solution for this issue utilising an optimised side-chain protection strategy that minimises aspartimide formation would therefore be most desirable. To this end, we developed the following new derivatives: Fmoc-Asp(OEpe)-OH (Epe = 3-ethyl-3-pentyl), Fmoc-Asp(OPhp)-OH (Php = 4-n-propyl-4-heptyl) and Fmoc-Asp(OBno)-OH (Bno = 5-n-butyl-5-nonyl). We have compared their effectiveness against that of Fmoc-Asp(OtBu)-OH and Fmoc-Asp(OMpe)-OH in the well-established scorpion toxin II model peptide variants H-Val-Lys-Asp-Asn/Arg-Tyr-Ile-OH by treatments of the peptidyl resins with the Fmoc removal reagents containing piperidine and DBU at both room and elevated temperatures. The new derivatives proved to be extremely effective in minimising aspartimide by-products in each application.
Online Inquiry
Verification code
Inquiry Basket