Fmoc-O-tert-butyl-L-serine
Need Assistance?
  • US & Canada:
    +
  • UK: +

Fmoc-O-tert-butyl-L-serine

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Fmoc-Amino Acids
Catalog number
BAT-003813
CAS number
71989-33-8
Molecular Formula
C22H25NO5
Molecular Weight
383.40
Fmoc-O-tert-butyl-L-serine
IUPAC Name
(2S)-2-(9H-fluoren-9-ylmethoxycarbonylamino)-3-[(2-methylpropan-2-yl)oxy]propanoic acid
Synonyms
Fmoc-L-Ser(tBu)-OH; (2S)-2-(9H-fluoren-9-ylmethoxycarbonylamino)-3-[(2-methylpropan-2-yl)oxy]propanoic acid
Appearance
White powder
Purity
≥ 99.7% (Chiral HPLC)
Density
1.216 g/cm3
Melting Point
125-140 °C
Boiling Point
510.4 °C
Storage
Store at 2-8 °C
InChI
InChI=1S/C22H25NO5/c1-22(2,3)28-13-19(20(24)25)23-21(26)27-12-18-16-10-6-4-8-14(16)15-9-5-7-11-17(15)18/h4-11,18-19H,12-13H2,1-3H3,(H,23,26)(H,24,25)/t19-/m0/s1
InChI Key
REITVGIIZHFVGU-IBGZPJMESA-N
Canonical SMILES
CC(C)(C)OCC(C(=O)O)NC(=O)OCC1C2=CC=CC=C2C3=CC=CC=C13
1. Thirteen decades of peptide synthesis: key developments in solid phase peptide synthesis and amide bond formation utilized in peptide ligation
Da'san M M Jaradat Amino Acids. 2018 Jan;50(1):39-68. doi: 10.1007/s00726-017-2516-0. Epub 2017 Nov 28.
A historical overview of peptide chemistry from T. Curtius to E. Fischer to M. Bergmann and L. Zervas is first presented. Next, the fundamentals of peptide synthesis with a focus on solid phase peptide synthesis by R. B. Merrifield are described. Immobilization strategies to attach the first amino acid to the resin, coupling strategies in stepwise peptide chain elongation, and approaches to synthesize difficult peptide sequences are also shown. A brief comparison between tert-butyloxycarbonyl (Boc)/benzyl (Bzl) strategy and 9-fluorenylmethoxycarbonyl (Fmoc)/tert-butyl (t -Bu) strategy utilized in solid phase peptide synthesis is given with an emphasis on the latter. Finally, the review focuses on the discovery and development of peptide ligation and the latest advances in this field including native amide bond formation strategies, these include the native chemical ligation, α-ketoacid-hydroxylamine ligation, and serine/threonine ligation which are the most commonly used chemoselective ligation methods that provide amide bond at the ligation site. This review provides an overview of the literature concerning the most important advances in the chemical synthesis of proteins and peptides covering the period from 1882 to 2017.
2. 2,3-Diaminopropanols Obtained from d-Serine as Intermediates in the Synthesis of Protected 2,3-l-Diaminopropanoic Acid (l-Dap) Methyl Esters
Andrea Temperini, Donatella Aiello, Fabio Mazzotti, Constantinos M Athanassopoulos, Pierantonio De Luca, Carlo Siciliano Molecules. 2020 Mar 13;25(6):1313. doi: 10.3390/molecules25061313.
A synthetic strategy for the preparation of two orthogonally protected methyl esters of the non-proteinogenic amino acid 2,3-l-diaminopropanoic acid (l-Dap) was developed. In these structures, the base-labile protecting group 9-fluorenylmethyloxycarbonyl (Fmoc) was paired to the p-toluensulfonyl (tosyl, Ts) or acid-labile tert-butyloxycarbonyl (Boc) moieties. The synthetic approach to protected l-Dap methyl esters uses appropriately masked 2,3-diaminopropanols, which are obtained via reductive amination of an aldehyde prepared from the commercial amino acid Nα-Fmoc-O-tert-butyl-d-serine, used as the starting material. Reductive amination is carried out with primary amines and sulfonamides, and the process is assisted by the Lewis acid Ti(OiPr)4. The required carboxyl group is installed by oxidizing the alcoholic function of 2,3-diaminopropanols bearing the tosyl or benzyl protecting group on the 3-NH2 site. The procedure can easily be applied using the crude product obtained after each step, minimizing the need for chromatographic purifications. Chirality of the carbon atom of the starting d-serine template is preserved throughout all synthetic steps.
3. Perfluoro-tert-butanol for selective on-resin detritylation: a mild alternative to traditionally used methods
Anita Wester, Anna Mette Hansen, Paul R Hansen, Henrik Franzyk Amino Acids. 2021 Sep;53(9):1455-1466. doi: 10.1007/s00726-021-03059-8. Epub 2021 Aug 19.
Solid-phase synthesis of cyclic, branched or side-chain-modified peptides typically involves introduction of a residue carrying a temporary side-chain protecting group that undergoes selective on-resin removal. In particular, Nα-Fmoc-Nε-(4-methyltriphenylmethyl) (Mtt)-protected lysine and its shorter analogues are commercially available and extensively used in this context. Nevertheless, rapid reliable methods for on-resin removal of Mtt groups in the presence of tert-butyloxycarbonyl (Boc) groups are needed. Current commonly used conditions involve low concentrations (1-3%) of trifluoroacetic acid (TFA) in dichloromethane, albeit adjustment to each specific application is required to avoid premature removal of Boc groups or cleavage from the linker. Hence, a head-to-head comparison of several deprotection conditions was performed. The selected acids represent a wide range of acidity from TFA to trifluoroethanol. Also, on-resin removal of the N-(4-methoxytriphenylmethyl) (Mmt) and O-trityl groups (on serine) was investigated under similar conditions. The mildest conditions identified for Mtt deprotection involve successive treatments with 30% hexafluoroisopropanol (HFIP) or 30% perfluoro-tert-butanol [(CF3)3COH] in dichloromethane (3 × 5 or 3 × 15 min, respectively), while 30% HFIP, 30% (CF3)3COH, or 10% AcOH-20% trifluoroethanol (TFE) in CH2Cl2 (3 × 5 min) as well as 5% trichloroacetic acid in CH2Cl2 (3 × 2 min) enabled Mmt removal. Treatment with 1% TFA with/without 2% triisopropylsilane added (3 × 5 min), but also prolonged treatment with 30% (CF3)3COH (5 × 15 min), led to selective deprotection of an O-Trt group on a serine residue. In all cases, the sequences also contained N-Boc or O-tBu protecting groups, which were not affected by 30% HFIP or 30% (CF3)3COH even after a prolonged reaction time of 4 h. Finally, the optimized conditions involving HFIP or (CF3)3COH proved applicable also for selective deprotection of a longer resin-bound peptide [i.e., Ac-Gly-Leu-Leu-Lys(Mtt)-Arg(Pbf)-Ile-Lys(Boc)-Ser(tBu)-Leu-Leu-RAM-PS] as well as allowed for an almost complete deprotection of a Dab(Mtt) residue.
Online Inquiry
Verification code
Inquiry Basket