1. High-yield recombinant expression of the chicken antimicrobial peptide fowlicidin-2 in Escherichia coli
Xingjun Feng, Wenshan Xu, Pei Qu, Xiaochong Li, Liwei Xing, Di Liu, Jian Jiao, Jue Wang, Zhongqiu Li, Chunlong Liu Biotechnol Prog. 2015 Mar-Apr;31(2):369-74. doi: 10.1002/btpr.2041. Epub 2015 Feb 2.
The antimicrobial peptide fowlicidin-2 identified in chicken is a member of the cathelicidins family. The mature fowlicidin-2 possesses high antibacterial efficacy and lipopolysaccharide (LPS) neutralizing activity, and also represents an excellent candidate as an antimicrobial agent. In the present study, the recombinant fowlicidin-2 was successfully produced by Escherichia coli (E. coli) recombinant expression system. The gene encoding fowlicidin-2 with the codon preference of E. coli was designed through codon optimization and synthesized in vitro. The gene was then ligated into the plasmid pET-32a(+), which features fusion protein thioredoxin at the N-terminal. The recombinant plasmid was transformed into E. coli BL21(DE3) and cultured in Luria-Bertani (LB) medium. After isopropyl-β-D-thiogalactopyranoside (IPTG) induction, the fowlicidin-2 fusion protein was successfully expressed as inclusion bodies. The inclusion bodies were dissolved and successfully released the peptide in 70% formic acid solution containing cyanogen bromide (CNBr) in a single step. After purification by reverse-phase high-performance liquid chromatography (RP-HPLC), ~6.0 mg of fowlicidin-2 with purity more than 97% was obtained from 1 litre of bacteria culture. The recombinant peptide exhibited high antibacterial activity against the Gram-positive and Gram-negative bacteria, and even drug-resistant strains. This system could be used to rapidly and efficiently produce milligram quantities of a battery of recombinant antimicrobial peptides as well as for large-scale production.
2. Recombinant expression and biological characterization of the antimicrobial peptide fowlicidin-2 in Pichia pastoris
Li-Wei Xing, Shi-Xun Tian, Wei Gao, Na Yang, Pei Qu, Di Liu, Jian Jiao, Jue Wang, Xing-Jun Feng Exp Ther Med. 2016 Oct;12(4):2324-2330. doi: 10.3892/etm.2016.3578. Epub 2016 Aug 5.
Fowlicidins are a group of cathelicidin antimicrobial peptides that were initially identified in chickens. Fowlicidin-2, which is composed of 31 amino acids, is widely expressed in the majority of tissues in chickens and has an important role in innate immunity. In the present study, a recombinant expression system for fowlicidin-2 was successfully constructed using Pichia pastoris X-33 and the expression vector pPICZα-A. Under the optimized fermentation conditions, 85.6 mg fowlicidin-2 with >95% purity was obtained from 1 liter culture medium following purification by ion exchange chromatography and reversed phase high performance liquid chromatography. The recombinant fowlicidin-2 exhibited broad spectrum antimicrobial activity and had a minimum inhibitory concentration ranging from 1 to 4 µM. Furthermore, recombinant fowlicidin-2 exhibited hemolytic activity, promoting 50% human erythrocyte hemolysis in the concentration range of 128-256 µM, and anticancer activity, resulting in the death of 50% of A375 human malignant melanoma cells in the concentration range of 2-4 µM. The results of the present study suggest that recombinant fowlicidin-2 may be a promising candidate for therapeutic applications.
3. The central kink region of fowlicidin-2, an alpha-helical host defense peptide, is critically involved in bacterial killing and endotoxin neutralization
Yanjing Xiao, Alvaro I Herrera, Yugendar R Bommineni, Jose L Soulages, Om Prakash, Guolong Zhang J Innate Immun. 2009;1(3):268-80. doi: 10.1159/000174822. Epub 2008 Nov 14.
Fowlicidins are a group of newly identified chicken cathelicidin host defense peptides. We have shown that the putatively mature fowlicidin-2 of 31 amino acid residues possesses potent antibacterial and lipopolysaccharide (LPS)- neutralizing activities, but with a noticeable toxicity to mammalian cells. As a first step in exploring the structure-activity relationships of fowlicidin-2, in this study we determined its tertiary structure by nuclear magnetic resonance spectroscopy. Unlike the majority of cathelicidins, which are composed of a predominant alpha-helix with a short hinge sequence near the center, fowlicidin-2 consists of 2 well-defined alpha-helical segments (residues 6-12 and 23-27) connected by a long extensive kink (residues 13-20) induced by proline. To further investigate the functional significance of each of these structural components, several N- and C-terminal deletion analogs of fowlicidin-2 were synthesized and analyzed for their antibacterial, cytotoxic and LPS-neutralizing activities. Our results indicated that neither the N- nor C-terminal alpha-helix alone is sufficient to confer any function. Rather, fowlicidin-2(1-18) and fowlicidin-2(15-31), 2 alpha-helical segments with inclusion of the central cationic kink region, retained substantial capacities to kill bacteria and neutralize the LPS-induced proinflammatory response, relative to the parent peptide. More desirably, these 2 peptide analogs showed substantially reduced toxicity to human erythrocytes and epithelial cells, indicative of improved potential as antibacterial and antisepsis agents. To our knowledge, fowlicidin-2 is the first alpha-helical cathelicidin, with the central kink region shown to be critically important in killing bacteria and neutralizing LPS.