Gastric Inhibitory Polypeptide (1-30) amide (porcine)
Need Assistance?
  • US & Canada:
    +
  • UK: +

Gastric Inhibitory Polypeptide (1-30) amide (porcine)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

It is a fully glucose-dependent insulinotropic polypeptide (GIP) receptor agonist with high affinity equal to native GIP(1-42). It is a weak inhibitor of gastric acid secretion and a strong stimulator of insulin. The site responsible for insulinotropic activity is apparently located between residues 19 and 30 of GIP.

Category
Peptide Inhibitors
Catalog number
BAT-015159
CAS number
134846-93-8
Molecular Formula
C162H245N41O47S
Molecular Weight
3551.04
Gastric Inhibitory Polypeptide (1-30) amide (porcine)
IUPAC Name
(4S)-5-[[2-[[(2S,3R)-1-[[(2S)-1-[[(2S,3S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S,3S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S,3S)-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-4-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-1,6-diamino-1-oxohexan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-carboxy-1-oxopropan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-carboxy-1-oxopropan-2-yl]amino]-4-methylsulfanyl-1-oxobutan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-3-carboxy-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-2-oxoethyl]amino]-4-[[(2S)-2-[[(2S)-2-amino-3-(4-hydroxyphenyl)propanoyl]amino]propanoyl]amino]-5-oxopentanoic acid
Synonyms
Glucose-Dependent Insulinotropic Polypeptide (1-30) amide (porcine); H-Tyr-Ala-Glu-Gly-Thr-Phe-Ile-Ser-Asp-Tyr-Ser-Ile-Ala-Met-Asp-Lys-Ile-Arg-Gln-Gln-Asp-Phe-Val-Asn-Trp-Leu-Leu-Ala-Gln-Lys-NH2; L-tyrosyl-L-alanyl-L-alpha-glutamyl-glycyl-L-threonyl-L-phenylalanyl-L-isoleucyl-L-seryl-L-alpha-aspartyl-L-tyrosyl-L-seryl-L-isoleucyl-L-alanyl-L-methionyl-L-alpha-aspartyl-L-lysyl-L-isoleucyl-L-arginyl-L-glutaminyl-L-glutaminyl-L-alpha-aspartyl-L-phenylalanyl-L-valyl-L-asparagyl-L-tryptophyl-L-leucyl-L-leucyl-L-alanyl-L-glutaminyl-L-lysinamide; GIP (1-30) amide, porcine
Appearance
White Powder
Purity
≥95%
Density
1.5±0.1 g/cm3
Sequence
YAEGTFISDYSIAMDKIRQQDFVNWLLAQK-NH2
Storage
Store at -20°C
Solubility
Soluble in DMF (1 mg/mL)
InChI
InChI=1S/C162H245N41O47S/c1-18-82(10)129(203-156(245)118(78-205)197-147(236)109(69-92-45-49-95(208)50-46-92)189-152(241)116(74-127(220)221)194-155(244)117(77-204)198-160(249)131(84(12)20-3)202-154(243)111(68-90-36-25-22-26-37-90)195-161(250)132(88(16)206)199-123(213)76-175-138(227)102(54-58-124(214)215)180-134(223)85(13)176-137(226)97(165)66-91-43-47-94(207)48-44-91)158(247)178-87(15)136(225)182-106(59-63-251-17)143(232)193-114(72-125(216)217)150(239)183-100(41-30-32-61-164)144(233)201-130(83(11)19-2)159(248)186-101(42-33-62-173-162(171)172)139(228)184-104(52-56-120(167)210)141(230)185-105(53-57-121(168)211)142(231)192-115(73-126(218)219)151(240)190-110(67-89-34-23-21-24-35-89)153(242)200-128(81(8)9)157(246)196-113(71-122(169)212)149(238)191-112(70-93-75-174-98-39-28-27-38-96(93)98)148(237)188-108(65-80(6)7)146(235)187-107(64-79(4)5)145(234)177-86(14)135(224)181-103(51-55-119(166)209)140(229)179-99(133(170)222)40-29-31-60-163/h21-28,34-39,43-50,75,79-88,97,99-118,128-132,174,204-208H,18-20,29-33,40-42,51-74,76-78,163-165H2,1-17H3,(H2,166,209)(H2,167,210)(H2,168,211)(H2,169,212)(H2,170,222)(H,175,227)(H,176,226)(H,177,234)(H,178,247)(H,179,229)(H,180,223)(H,181,224)(H,182,225)(H,183,239)(H,184,228)(H,185,230)(H,186,248)(H,187,235)(H,188,237)(H,189,241)(H,190,240)(H,191,238)(H,192,231)(H,193,232)(H,194,244)(H,195,250)(H,196,246)(H,197,236)(H,198,249)(H,199,213)(H,200,242)(H,201,233)(H,202,243)(H,203,245)(H,214,215)(H,216,217)(H,218,219)(H,220,221)(H4,171,172,173)/t82-,83-,84-,85-,86-,87-,88+,97-,99-,100-,101-,102-,103-,104-,105-,106-,107-,108-,109-,110-,111-,112-,113-,114-,115-,116-,117-,118-,128-,129-,130-,131-,132-/m0/s1
InChI Key
RXKIQZMMRLNJEJ-HHXLJNLWSA-N
Canonical SMILES
CCC(C)C(C(=O)NC(CCCNC(=N)N)C(=O)NC(CCC(=O)N)C(=O)NC(CCC(=O)N)C(=O)NC(CC(=O)O)C(=O)NC(CC1=CC=CC=C1)C(=O)NC(C(C)C)C(=O)NC(CC(=O)N)C(=O)NC(CC2=CNC3=CC=CC=C32)C(=O)NC(CC(C)C)C(=O)NC(CC(C)C)C(=O)NC(C)C(=O)NC(CCC(=O)N)C(=O)NC(CCCCN)C(=O)N)NC(=O)C(CCCCN)NC(=O)C(CC(=O)O)NC(=O)C(CCSC)NC(=O)C(C)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(CC4=CC=C(C=C4)O)NC(=O)C(CC(=O)O)NC(=O)C(CO)NC(=O)C(C(C)CC)NC(=O)C(CC5=CC=CC=C5)NC(=O)C(C(C)O)NC(=O)CNC(=O)C(CCC(=O)O)NC(=O)C(C)NC(=O)C(CC6=CC=C(C=C6)O)N
1. Molecular cloning, functional expression, and signal transduction of the GIP-receptor cloned from a human insulinoma
A Volz, B Lankat-Buttgereit, B Göke, H C Fehmann, R Göke, H P Bode FEBS Lett . 1995 Oct 2;373(1):23-9. doi: 10.1016/0014-5793(95)01006-z.
Glucose-dependent insulinotropic polypeptide (GIP) plays an important role in the regulation of postprandial insulin secretion and proinsulin gene expression of pancreatic beta-cells. This study demonstrates the molecular cloning of a cDNA for the GIP-receptor from a human insulinoma lambda gt11 cDNA library. The cloned cDNA encoded a seven transmembrane domain protein of 466 amino acids which showed high homology (41%) to the human glucagon-like peptide 1 (GLP-1) receptor. Homology to the GIP receptor from rat or hamster was 79% and 81%, respectively. When transfected stably into fibroblast CHL-cells a high affinity receptor was expressed which coupled to the adenylate cyclase with normal basal cAMP and increasing intracellular cAMP levels under stimulation with human GIP-1-42 (EC50 = 1.29 x 10(-13) M). The receptor accepted only human GIP 1-42 (Kd = 1.93 +/- 0.2 x 10(-8) M) and porcine truncated GIP 1-30 (Kd = 1.13 +/- 0.1 x 10(-8) M) as high affinity ligands. At 1 microM, exendin-4 and (9-39)amide weakly reduced GIP-binding (25%) whereas secretin, glucagon, glucagon-like peptide-1, vasoactive intestinal polypeptide, peptide histidine-isoleucine, and pituitary adenylyl cyclase activating peptide were without effect. In transfected CHL cells, GIP-1-42 did not increase intracellular calcium. Northern analysis revealed one transcript of human GIP receptor mRNA with an apparent size of 5.5 kb. The exact understanding of GIP receptor regulation and signal transduction will aid in the understanding of the incretin hormone's failure to exert its biological action at the pancreatic B-cell in type II diabetes mellitus.
2. Glucose-dependent insulinotropic polypeptide stimulated insulin release from a tumor-derived beta-cell line (beta TC3)
Z Huang, C D Fell, R A Pedersen, T J Kieffer, C B Verchere, J C Brown Can J Physiol Pharmacol . 1993 Dec;71(12):917-22. doi: 10.1139/y93-139.
The beta TC3 tumor cell line was examined for the presence of functional glucose-dependent insulinotropic polypeptide (GIP) receptors. Increasing amounts of natural porcine GIP decreased the binding of HPLC-purified [125I]GIP to beta TC3 cells in a concentration-dependent manner. Displacement of GIP was significant at concentrations as low as 500 pM, and the radioligand was fully displaced at 100 nM. GIP(1-30) produced a displacement of [125I]GIP comparable with that produced by GIP(1-42), and glucagon yielded 20% displacement at a concentration of 1 microM but was without effect at 100 mM. Incubation of beta TC3 cells in the presence of glucose concentrations of 2-20 mM yielded a concentration-dependent stimulation of immunoreactive insulin (IRI) release. GIP and glucagon-like peptide-I(7-36) amide (tGLP-I) at concentrations of 1 nM or greater significantly stimulated IRI release in the presence of 2 mM glucose. The threshold glucose concentration for GIP-stimulated IRI release from beta TC3 cells was 0.5 mM, and maximal potentiation of IRI release by GIP occurred at 5 mM glucose. Somatostatin significantly inhibited GIP-stimulated IRI release in the presence of 5 mM glucose. It is concluded that beta TC3 cells have functional GIP receptors and may provide a useful model for the study of IRI secretion at the cellular level.
Online Inquiry
Verification code
Inquiry Basket