Gastric Inhibitory Polypeptide (6-30) amide (human)
Need Assistance?
  • US & Canada:
    +
  • UK: +

Gastric Inhibitory Polypeptide (6-30) amide (human)

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Gastric Inhibitory Polypeptide (6-30) amide (human), a porcine homolog, antagonizes the induction of cAMP production of gastric inhibitory polypeptide (human) (GIP human) in vitro. Competitive binding studies showed that it exhibited a receptor-binding affinity equivalent to the gastric inhibitory polypeptide (human) with an IC50 of 3.08±0.57 nM.

Category
Peptide Inhibitors
Catalog number
BAT-014507
CAS number
1139691-72-7
Molecular Formula
C139H209N35O38S
Molecular Weight
3010.42
IUPAC Name
(3S)-4-[[(2S)-6-amino-1-[[(2S,3S)-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-4-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-1,6-diamino-1-oxohexan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-carboxy-1-oxopropan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-3-(1H-imidazol-5-yl)-1-oxopropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-[[(2S)-2-[[(2S)-2-[[(2S,3S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3S)-2-[[(2S)-2-amino-3-phenylpropanoyl]amino]-3-methylpentanoyl]amino]-3-hydroxypropanoyl]amino]-3-carboxypropanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-3-hydroxypropanoyl]amino]-3-methylpentanoyl]amino]propanoyl]amino]-4-methylsulfanylbutanoyl]amino]-4-oxobutanoic acid
Synonyms
GIP (6-30) amide (human); H-Phe-Ile-Ser-Asp-Tyr-Ser-Ile-Ala-Met-Asp-Lys-Ile-His-Gln-Gln-Asp-Phe-Val-Asn-Trp-Leu-Leu-Ala-Gln-Lys-NH2; L-phenylalanyl-L-isoleucyl-L-seryl-L-alpha-aspartyl-L-tyrosyl-L-seryl-L-isoleucyl-L-alanyl-L-methionyl-L-alpha-aspartyl-L-lysyl-L-isoleucyl-L-histidyl-L-glutaminyl-L-glutaminyl-L-alpha-aspartyl-L-phenylalanyl-L-valyl-L-asparagyl-L-tryptophyl-L-leucyl-L-leucyl-L-alanyl-L-glutaminyl-L-lysinamide; glucose-dependent insulinotropic polypeptide (6-30) amide (human)
Appearance
White Powder
Purity
≥95% by HPLC
Density
1.3±0.1 g/cm3
Boiling Point
2775.2±65.0°C at 760 mmHg
Sequence
FISDYSIAMDKIHQQDFVNWLLAQK-NH2
Storage
Store at -20°C
Solubility
Soluble in Water
InChI
InChI=1S/C139H209N35O38S/c1-16-72(10)112(174-135(208)103(67-176)169-126(199)94(57-79-39-41-82(177)42-40-79)161-132(205)101(63-110(186)187)166-134(207)102(66-175)170-139(212)113(73(11)17-2)172-118(191)84(142)55-77-31-21-19-22-32-77)137(210)152-76(14)117(190)155-91(49-52-213-15)122(195)165-99(61-108(182)183)130(203)156-87(38-28-30-51-141)123(196)173-114(74(12)18-3)138(211)167-97(59-81-65-148-68-150-81)128(201)158-89(44-47-105(144)179)120(193)157-90(45-48-106(145)180)121(194)164-100(62-109(184)185)131(204)162-95(56-78-33-23-20-24-34-78)133(206)171-111(71(8)9)136(209)168-98(60-107(146)181)129(202)163-96(58-80-64-149-85-36-26-25-35-83(80)85)127(200)160-93(54-70(6)7)125(198)159-92(53-69(4)5)124(197)151-75(13)116(189)154-88(43-46-104(143)178)119(192)153-86(115(147)188)37-27-29-50-140/h19-26,31-36,39-42,64-65,68-76,84,86-103,111-114,149,175-177H,16-18,27-30,37-38,43-63,66-67,140-142H2,1-15H3,(H2,143,178)(H2,144,179)(H2,145,180)(H2,146,181)(H2,147,188)(H,148,150)(H,151,197)(H,152,210)(H,153,192)(H,154,189)(H,155,190)(H,156,203)(H,157,193)(H,158,201)(H,159,198)(H,160,200)(H,161,205)(H,162,204)(H,163,202)(H,164,194)(H,165,195)(H,166,207)(H,167,211)(H,168,209)(H,169,199)(H,170,212)(H,171,206)(H,172,191)(H,173,196)(H,174,208)(H,182,183)(H,184,185)(H,186,187)/t72-,73-,74-,75-,76-,84-,86-,87-,88-,89-,90-,91-,92-,93-,94-,95-,96-,97-,98-,99-,100-,101-,102-,103-,111-,112-,113-,114-/m0/s1
InChI Key
YGIQNDBYDZASQG-YQRZJRGOSA-N
Canonical SMILES
CCC(C)C(C(=O)NC(CC1=CN=CN1)C(=O)NC(CCC(=O)N)C(=O)NC(CCC(=O)N)C(=O)NC(CC(=O)O)C(=O)NC(CC2=CC=CC=C2)C(=O)NC(C(C)C)C(=O)NC(CC(=O)N)C(=O)NC(CC3=CNC4=CC=CC=C43)C(=O)NC(CC(C)C)C(=O)NC(CC(C)C)C(=O)NC(C)C(=O)NC(CCC(=O)N)C(=O)NC(CCCCN)C(=O)N)NC(=O)C(CCCCN)NC(=O)C(CC(=O)O)NC(=O)C(CCSC)NC(=O)C(C)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(CC5=CC=C(C=C5)O)NC(=O)C(CC(=O)O)NC(=O)C(CO)NC(=O)C(C(C)CC)NC(=O)C(CC6=CC=CC=C6)N
1. Glucagon-related peptides from phylogenetically ancient fish reveal new approaches to the development of dual GCGR and GLP1R agonists for type 2 diabetes therapy
Galyna V Graham, J Michael Conlon, Yasser H Abdel-Wahab, Peter R Flatt Peptides. 2018 Dec;110:19-29. doi: 10.1016/j.peptides.2018.10.013. Epub 2018 Nov 1.
The insulinotropic and antihyperglycaemic properties of glucagons from the sea lamprey (Petromyzontiformes), paddlefish (Acipenseriformes) and trout (Teleostei) and oxyntomodulin from dogfish (Elasmobranchii) and ratfish (Holocephali) were compared with those of human glucagon and GLP-1 in mammalian test systems. All fish peptides produced concentration-dependent stimulation of insulin release from BRIN-BD11 rat and 1.1 B4 human clonal β-cells and isolated mouse islets. Paddlefish glucagon was the most potent and effective peptide. The insulinotropic activity of paddlefish glucagon was significantly (P < 0.01) decreased after incubating BRIN-BD11 cells with the GLP1R antagonist, exendin-4(9-39) and the GCGR antagonist [des-His1,Pro4, Glu9] glucagon amide but GIPR antagonist, GIP(6-30)Cex-K40[palmitate] was without effect. Paddlefish and lamprey glucagons and dogfish oxyntomodulin (10 nmol L-1) produced significant (P < 0.01) increases in cAMP concentration in Chinese hamster lung (CHL) cells transfected with GLP1R and human embryonic kidney (HEK293) cells transfected with GCGR. The insulinotropic activity of paddlefish glucagon was attenuated in CRISPR/Cas9-engineered GLP1R knock-out INS-1 cells but not in GIPR knock-out cells. Intraperitoneal administration of all fish peptides, except ratfish oxyntomodulin, to mice together with a glucose load produced significant (P < 0.05) decreases in plasma glucose concentrations and paddlefish glucagon produced a greater release of insulin compared with GLP-1. Paddlefish glucagon shares the sequences Glu15-Glu16 and Glu24-Trp25-Leu26-Lys27-Asn28-Gly29 with the potent GLP1R agonist, exendin-4 so may be regarded as a naturally occurring, dual-agonist hybrid peptide that may serve as a template design of new drugs for type 2 diabetes therapy.
2. A DPP-IV-resistant triple-acting agonist of GIP, GLP-1 and glucagon receptors with potent glucose-lowering and insulinotropic actions in high-fat-fed mice
V K Bhat, B D Kerr, S Vasu, P R Flatt, V A Gault Diabetologia. 2013 Jun;56(6):1417-24. doi: 10.1007/s00125-013-2892-2. Epub 2013 Mar 17.
Aims/hypothesis: We designed a chemically modified, enzyme-resistant peptide with triple-acting properties based on human glucagon with amino acid substitutions aligned to strategic positions in the sequence of glucose-dependent insulinotropic polypeptide (GIP). Methods: Y(1)-dA(2)-I(12)-N(17)-V(18)-I(27)-G(28,29)-glucagon (termed YAG-glucagon) was incubated with dipeptidylpeptidase IV (DPP-IV) to assess stability, BRIN-BD11 cells to evaluate insulin secretion, and receptor-transfected cells to examine cAMP production. Acute glucose-lowering and insulinotropic properties of YAG-glucagon were assessed in National Institutes of Health (NIH) Swiss mice, while longer-term actions on glucose homeostasis, insulin secretion, food intake and body weight were examined in high-fat-fed mice. Results: YAG-glucagon was resistant to DPP-IV, increased in vitro insulin secretion (1.5-3-fold; p < 0.001) and stimulated cAMP production in GIP receptor-, glucagon-like peptide-1 (GLP-1) receptor- and glucagon receptor-transfected cells. Plasma glucose levels were significantly reduced (by 51%; p < 0.01) and insulin concentrations increased (1.2-fold; p < 0.01) after acute injection of YAG-glucagon in NIH Swiss mice. Acute actions were countered by established GIP, GLP-1 and glucagon antagonists. In high-fat-fed mice, twice-daily administration of YAG-glucagon for 14 days reduced plasma glucose (40% reduction; p < 0.01) and increased plasma insulin concentrations (1.8-fold; p < 0.05). Glycaemic responses were markedly improved (19-48% reduction; p < 0.05) and insulin secretion enhanced (1.5-fold; p < 0.05) after a glucose load, which were independent of changes in insulin sensitivity, food intake and body weight. Conclusions/interpretation: YAG-glucagon is a DPP-IV-resistant triple agonist of GIP, GLP-1 and glucagon receptors and exhibits beneficial biological properties suggesting that it may hold promise for treatment of type 2 diabetes.
3. Novel dual agonist peptide analogues derived from dogfish glucagon show promising in vitro insulin releasing actions and antihyperglycaemic activity in mice
F P M O'Harte, M T Ng, A M Lynch, J M Conlon, P R Flatt Mol Cell Endocrinol. 2016 Aug 15;431:133-44. doi: 10.1016/j.mce.2016.05.012. Epub 2016 May 11.
The antidiabetic potential of thirteen novel dogfish glucagon derived analogues were assessed in vitro and in acute in vivo studies. Stable peptide analogues enhanced insulin secretion from BRIN-BD11 β-cells (p < 0.001) and reduced acute glycaemic responses following intraperitoneal glucose (25 nmol/kg) in healthy NIH Swiss mice (p < 0.05-p<0.001). The in vitro insulinotropic actions of [S2a]dogfish glucagon, [S2a]dogfish glucagon-exendin-4(31-39) and [S2a]dogfish glucagon-Lys(30)-γ-glutamyl-PAL, were blocked (p < 0.05-p<0.001) by the specific GLP-1 and glucagon receptor antagonists, exendin-4(9-39) and (desHis(1)Pro(4)Glu(9))glucagon amide but not by (Pro(3))GIP, indicating lack of GIP receptor involvement. These analogues dose-dependently stimulated cAMP production in GLP-1 and glucagon (p < 0.05-p<0.001) but not GIP-receptor transfected cells. They improved acute glycaemic and insulinotropic responses in high-fat fed diabetic mice and in wild-type C57BL/6J and GIPR-KO mice (p < 0.05-p<0.001), but not GLP-1R-KO mice, confirming action on GLP-1 but not GIP receptors. Overall, dogfish glucagon analogues have potential for diabetes therapy, exerting beneficial metabolic effects via GLP-1 and glucagon receptors.
Online Inquiry
Verification code
Inquiry Basket