Need Assistance?
  • US & Canada:
    +
  • UK: +

GaTx2

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

GaTx2 is a high affinity ClC-2 blocker (apparent KD ~ 50 pM) with selectivity for ClC-2 over other ClC family members (ClC-0, ClC-1, ClC-3 and ClC-4), CFTR, GABAC, CaCC and KV1.2. GaTx2 slows ClC-2 activation but does not inhibit open ClC-2 channels.

Category
Peptide Inhibitors
Catalog number
BAT-010278
CAS number
194665-85-5
Molecular Formula
C125H199N39O47S6
Molecular Weight
3192.54
GaTx2
IUPAC Name
(2S,3S)-2-[[(2S)-1-[(2S)-4-carboxy-2-[[(1R,7S,10S,13S,16R,19S,22S,25S,28S,31S,34S,37S,40S,43R,46S,49S,52S,55S,58R,65S,68S,71R,78S,81R)-28,40,55-tris(4-aminobutyl)-71-[[(2S)-2-[[(2S)-2-amino-3-methylbutanoyl]amino]-3-hydroxypropanoyl]amino]-49-(2-amino-2-oxoethyl)-25-(3-amino-3-oxopropyl)-34-(3-carbamimidamidopropyl)-68-(2-carboxyethyl)-10,46,52,65-tetrakis(carboxymethyl)-22-[(1R)-1-hydroxyethyl]-19-(hydroxymethyl)-13-(1H-imidazol-4-ylmethyl)-31,37-dimethyl-2,8,11,14,17,20,23,26,29,32,35,38,41,44,47,50,53,56,64,67,70,76,79-tricosaoxo-78-propan-2-yl-60,61,73,74,83,84-hexathia-3,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,63,66,69,77,80-tricosazatetracyclo[41.19.13.1016,58.03,7]pentaoctacontane-81-carbonyl]amino]butanoyl]pyrrolidine-2-carbonyl]amino]-3-methylpentanoic acid
Synonyms
Leiuropeptide II
Appearance
White Lyophilized Solid
Density
1.65±0.1 g/cm3(Predicted)
Sequence
VSC(1)EDC(2)PDHC(3)STQKARAKC(1)DNDKC(2)VC(3)EPI
Storage
Store at -20°C
InChI
InChI=1S/C125H199N39O47S6/c1-10-56(6)94(124(210)211)161-118(204)83-25-19-36-163(83)122(208)67(28-31-87(172)173)145-113(199)79-50-215-214-49-78-115(201)152-75(46-166)111(197)162-95(59(9)167)121(207)144-65(26-29-84(129)168)102(188)141-61(20-11-14-32-126)98(184)137-58(8)97(183)140-64(23-17-35-135-125(132)133)99(185)138-57(7)96(182)139-62(21-12-15-33-127)100(186)154-77-48-213-212-47-76(157-110(196)74(45-165)153-119(205)92(131)54(2)3)112(198)143-66(27-30-86(170)171)103(189)148-72(42-90(178)179)109(195)159-81(123(209)164-37-18-24-82(164)117(203)151-73(43-91(180)181)108(194)146-68(104(190)156-78)38-60-44-134-53-136-60)52-217-216-51-80(116(202)160-93(55(4)5)120(206)158-79)155-101(187)63(22-13-16-34-128)142-106(192)70(40-88(174)175)149-105(191)69(39-85(130)169)147-107(193)71(41-89(176)177)150-114(77)200/h44,53-59,61-83,92-95,165-167H,10-43,45-52,126-128,131H2,1-9H3,(H2,129,168)(H2,130,169)(H,134,136)(H,137,184)(H,138,185)(H,139,182)(H,140,183)(H,141,188)(H,142,192)(H,143,198)(H,144,207)(H,145,199)(H,146,194)(H,147,193)(H,148,189)(H,149,191)(H,150,200)(H,151,203)(H,152,201)(H,153,205)(H,154,186)(H,155,187)(H,156,190)(H,157,196)(H,158,206)(H,159,195)(H,160,202)(H,161,204)(H,162,197)(H,170,171)(H,172,173)(H,174,175)(H,176,177)(H,178,179)(H,180,181)(H,210,211)(H4,132,133,135)/t56-,57-,58-,59+,61-,62-,63-,64-,65-,66-,67-,68-,69-,70-,71-,72-,73-,74-,75-,76-,77-,78-,79-,80-,81-,82-,83-,92-,93-,94-,95-/m0/s1
InChI Key
NDCNPIYRYDSDEM-TZZHORBYSA-N
Canonical SMILES
CCC(C)C(C(=O)O)NC(=O)C1CCCN1C(=O)C(CCC(=O)O)NC(=O)C2CSSCC3C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC(C(=O)NC4CSSCC(C(=O)NC(C(=O)NC(C(=O)NC(CSSCC(C(=O)NC(C(=O)N2)C(C)C)NC(=O)C(NC(=O)C(NC(=O)C(NC(=O)C(NC4=O)CC(=O)O)CC(=O)N)CC(=O)O)CCCCN)C(=O)N5CCCC5C(=O)NC(C(=O)NC(C(=O)N3)CC6=CNC=N6)CC(=O)O)CC(=O)O)CCC(=O)O)NC(=O)C(CO)NC(=O)C(C(C)C)N)CCCCN)C)CCCNC(=N)N)C)CCCCN)CCC(=O)N)C(C)O)CO
1. Isolation and characterization of a high affinity peptide inhibitor of ClC-2 chloride channels
Julia Kubanek, Denis McMaster, Robert J French, Nael A McCarty, Christopher H Thompson, Matthew D Fuller, Pedro R Olivetti, Jan Pohl, Cody S Freeman J Biol Chem . 2009 Sep 18;284(38):26051-62. doi: 10.1074/jbc.M109.031724.
The ClC protein family includes voltage-gated chloride channels and chloride/proton exchangers. In eukaryotes, ClC proteins regulate membrane potential of excitable cells, contribute to epithelial transport, and aid in lysosomal acidification. Although structure/function studies of ClC proteins have been aided greatly by the available crystal structures of a bacterial ClC chloride/proton exchanger, the availability of useful pharmacological tools, such as peptide toxin inhibitors, has lagged far behind that of their cation channel counterparts. Here we report the isolation, from Leiurus quinquestriatus hebraeus venom, of a peptide toxin inhibitor of the ClC-2 chloride channel. This toxin, GaTx2, inhibits ClC-2 channels with a voltage-dependent apparent K(D) of approximately 20 pm, making it the highest affinity inhibitor of any chloride channel. GaTx2 slows ClC-2 activation by increasing the latency to first opening by nearly 8-fold but is unable to inhibit open channels, suggesting that this toxin inhibits channel activation gating. Finally, GaTx2 specifically inhibits ClC-2 channels, showing no inhibitory effect on a battery of other major classes of chloride channels and voltage-gated potassium channels. GaTx2 is the first peptide toxin inhibitor of any ClC protein. The high affinity and specificity displayed by this toxin will make it a very powerful pharmacological tool to probe ClC-2 structure/function.
2. CLC-2 is a positive modulator of oligodendrocyte precursor cell differentiation and myelination
Junyan Wang, Rui Zhang, Xiaolin Hou, Xiaomin Zheng, Yin Wang, Fan Li, Yan Zhang, Liang Zhou, Ying Shen, Yunhong Li Mol Med Rep . 2018 Mar;17(3):4515-4523. doi: 10.3892/mmr.2018.8439.
Oligodendrocytes (OLs) are myelin-forming cells that are present within the central nervous system. Impaired oligodendrocyte precursor cell (OPC) differentiation into mature OLs is a major cause of demyelination diseases. Therefore, identifying the underlying molecular mechanisms of OPC differentiation is crucial to understand the processes of myelination and demyelination. It has been acknowledged that various extrinsic and intrinsic factors are involved in the control of OPC differentiation; however, the function of ion channels, particularly the voltage‑gated chloride channel (CLC), in OPC differentiation and myelination are not fully understood. The present study demonstrated that CLC‑2 may be a positive modulator of OPC differentiation and myelination. Western blotting results revealed that CLC‑2 was expressed in both OPCs and OLs. Furthermore, CLC‑2 currents (ICLC‑2) were recorded in both types of cells. The inhibition of ICLC‑2 by GaTx2, a blocker of CLC‑2, was demonstrated to be higher in OPCs compared with OLs, indicating that CLC‑2 may serve a role in OL differentiation. The results of western blotting and immunofluorescence staining also demonstrated that the expression levels of myelin basic protein were reduced following GaTx2 treatment, indicating that the differentiation of OPCs into OLs was inhibited following CLC‑2 inhibition. In addition, following western blot analysis, it was also demonstrated that the protein expression of the myelin proteins yin yang 1, myelin regulatory factor, Smad‑interacting protein 1 and sex‑determining region Y‑box 10 were regulated by CLC‑2 inhibition. Taken together, the results of the present study indicate that CLC‑2 may be a positive regulator of OPC differentiation and able to contribute to myelin formation and repair in myelin‑associated diseases by controlling the number and open state of CLC-2 channels.
3. Dual activation of CFTR and CLCN2 by lubiprostone in murine nasal epithelia
Doug Walker, Neeraj Vij, Eric S Schiffhauer, Olga Kovbasnjuk, Pamela L Zeitlin, Po Wei Kang, Seakwoo Lee Am J Physiol Lung Cell Mol Physiol . 2013 Mar 1;304(5):L324-31. doi: 10.1152/ajplung.00277.2012.
Multiple sodium and chloride channels on the apical surface of nasal epithelial cells contribute to periciliary fluid homeostasis, a function that is disrupted in patients with cystic fibrosis (CF). Among these channels is the chloride channel CLCN2, which has been studied as a potential alternative chloride efflux pathway in the absence of CFTR. The object of the present study was to use the nasal potential difference test (NPD) to quantify CLCN2 function in an epithelial-directed TetOn CLCN2 transgenic mouse model (TGN-K18rtTA-hCLCN2) by using the putative CLCN2 pharmacological agonist lubiprostone and peptide inhibitor GaTx2. Lubiprostone significantly increased chloride transport in the CLCN2-overexpressing mice following activation of the transgene by doxycycline. This response to lubiprostone was significantly inhibited by GaTx2 after CLCN2 activation in TGN-CLCN2 mice. Cftr(-/-) and Clc2(-/-) mice showed hyperpolarization indicative of chloride efflux in response to lubiprostone, which was fully inhibited by GaTx2 and CFTR inhibitor 172 + GlyH-101, respectively. Our study reveals lubiprostone as a pharmacological activator of both CFTR and CLCN2. Overexpression and activation of CLCN2 leads to improved mouse NPD readings, suggesting it is available as an alternative pathway for epithelial chloride secretion in murine airways. The utilization of CLCN2 as an alternative chloride efflux channel could provide clinical benefit to patients with CF, especially if the pharmacological activator is administered as an aerosol.
Online Inquiry
Verification code
Inquiry Basket