1. Shared epitopes for HLA-A3-restricted melanoma-reactive human CTL include a naturally processed epitope from Pmel-17/gp100
J C Skipper, D J Kittlesen, R C Hendrickson, D D Deacon, N L Harthun, S N Wagner, D F Hunt, V H Engelhard, C L Slingluff Jr J Immunol. 1996 Dec 1;157(11):5027-33.
Human CD8+ CTL recognize peptides bound to class I MHC molecules on the surface of melanoma cells. Several peptides derived from melanocyte lineage-specific proteins have been identified as epitopes for HLA-A2 restricted melanoma-reactive CTL. Because less than half of melanoma patients express HLA-A2, it is important to identify CTL epitopes restricted by other common MHC molecules including HLA-A1 and -A3. We have generated HLA-A3-restricted human CTL that recognize one or more shared melanoma Ags. All of the melanomas recognized by one of these CTL lines express Pmel-17/gp100, and those that fail to express this Ag are not lysed. This CTL line also specifically recognizes the lymphoblastoid line C1R-A3 following infection with a recombinant vaccinia encoding the melanocyte lineage-specific protein Pmel-17/gp100. Thus, at least one Pmel-17/ gp100 peptide is an epitope for this CTL line. We have identified ALLAVGATK (Pmel-17/gp100 residues 17-25) as an epitope for this CTL line and have shown that it is naturally processed and presented by HLA-A3 on melanoma cells. A second HLA-A3-restricted melanoma-reactive CTL line recognizes at least one additional shared epitope. These findings suggest that cellular immune responses directed against multiple shared melanoma epitopes exist in the 20 to 25% of melanoma patients who express HLA-A3. In addition, immunotherapy directed against Pmel-17/gp100 and other shared melanoma Ags may be useful in a large subset of these patients.
2. Analysis of a natural immune response against tumor antigens in a melanoma survivor: lessons applicable to clinical trial evaluations
G Yamshchikov, L Thompson, W G Ross, H Galavotti, W Aquila, D Deacon, J Caldwell, J W Patterson, D F Hunt, C L Slingluff Jr Clin Cancer Res. 2001 Mar;7(3 Suppl):909s-916s.
The long-term survival of some patients with metastatic melanoma may be attributable in part to cellular immune responses to melanoma antigens. However, little is known about the level of CTL reactivity in vivo that is required for immunological control of tumor progression. In the present report, T-cell responses were evaluated with lymphocytes obtained from tumor-involved nodes and peripheral blood of a long-term melanoma survivor. Using an ELISPOT assay, naturally occurring functional T cells, which recognize the peptide ALLAVGATK (gp100(17-25)) plus two other HLA-A3 restricted peptides, were detected in a tumor-involved lymph node. The ALLAVGATK-reactive T cells were also evaluated by MHC-tetramers staining and were found to be CD8+ CD45RO+ L-selectin(-) CD11a+, suggesting that they are antigen experienced and have a memory phenotype. Unstimulated peripheral blood lymphocytes from the same patient demonstrated no detectable T-cell responses; however, a single stimulation with ALLAVGATK peptide in vitro resulted in a dramatic expansion of peptide-reactive CTLs. This patient, with evidence of tumor-reactive CTLs targeted to several tumor antigens in a tumor-involved lymph node and with evidence of a circulating memory T-cell response, has remained disease-free for 6 years, despite prior bulky nodal metastasis. In contrast, three HLA-A3+ patients with rapidly progressive metastatic melanoma had no detectable T-cell response in tumor-involved nodes or peripheral blood lymphocytes, even after peptide stimulation ex vivo. The presented data are consistent with a systemic polyvalent immune response against tumor in this long-term survivor. These data provide an estimate of the level of CTL response that may be associated with protection from tumor recurrence.
3. Immunogenicity of the ALLAVGATK (gp100[17-25]) peptide in HLA-A3.1 melanoma patients
C Castelli, A Mazzocchi, F Rini, P Tarsini, L Rivoltini, M Maio, G Gallino, F Belli, G Parmiani Eur J Immunol. 1998 Apr;28(4):1143-54. doi: 10.1002/(SICI)1521-4141(199804)28:043.0.CO;2-K.
A T cell line recognizing autologous and allogeneic HLA-A3.1 melanomas was obtained from a disease-free melanoma patient (patient 15392). By transfection of a tumor cDNA library and in vitro sensitization experiments, the ALLAVGATK gp100/Mel17-derived peptide was found to be the epitope recognized by this melanoma-specific T cell line. The role of the ALLAVGATK peptide in the systemic immune response to melanoma of this patient was evaluated. When pulsed on the autologous peripheral blood mononuclear cells, the ALLAVGATK peptide generated tumor-specific HLA-A3-restricted T lymphocytes and a single restimulation in vitro was sufficient to raise gp100-specific T lymphocytes, indicating a high frequency of epitope-specific T cells. gp100-specific T cells were also induced from T lymphocytes purified from tumor-invaded lymph nodes (tumor-associated lymphocytes, TAL). TAL-derived effectors displayed lower peptide affinity and lower tumor recognition than effectors elicited from peripheral blood lymphocytes (PBL). To further evaluate its immunogenicity, ALLAVGATK was used to stimulate PBL derived from six additional HLA-A3.1 melanoma patients and seven healthy donors. After 7 weeks of peptide stimulation in vitro the generation of anti-gp100 and tumor-specific T cell lines was achieved in one out of the six patients analyzed. Taken together these data indicate that an in vivo priming leading to a systemic immunity against gp100 in HLA-A3 melanoma patients may occasionally occur and that the immunogenicity of ALLAVGATK peptide in melanoma patients is comparable to that of other HLA-A2-restricted epitopes derived from gp100/Mel 17 protein.