Need Assistance?
  • US & Canada:
    +
  • UK: +

GRK2i

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

GRK2i is a polypeptide inhibitor of GRK2 that specifically inhibits Gβγ activation of GRK2. GRK2i corresponds to the Gβγ-binding domain and acts as a cellular Gβγ antagonist.

Category
Peptide Inhibitors
Catalog number
BAT-010245
CAS number
148505-03-7
Molecular Formula
C153H256N50O41S
Molecular Weight
3484.08
GRK2i
IUPAC Name
(4S)-5-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-1-[(2S)-2-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-4-amino-1-[[(2S)-6-amino-1-[(2S)-2-[[(2S)-5-carbamimidamido-1-[[(1S)-1-carboxy-2-hydroxyethyl]amino]-1-oxopentan-2-yl]carbamoyl]pyrrolidin-1-yl]-1-oxohexan-2-yl]amino]-1,4-dioxobutan-2-yl]amino]-1-oxohexan-2-yl]amino]-4-methylsulfanyl-1-oxobutan-2-yl]amino]-1-oxohexan-2-yl]carbamoyl]pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl]amino]-5-carbamimidamido-1-oxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-4-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-6-amino-2-[[(2S)-6-amino-2-[[(2S)-2-amino-3-(1H-indol-3-yl)propanoyl]amino]hexanoyl]amino]hexanoyl]amino]-4-carboxybutanoyl]amino]-4-methylpentanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-carboxypropanoyl]amino]propanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-oxopentanoic acid
Appearance
White Lyophilized Solid
Purity
>98%
Density
1.49±0.1 g/cm3(Predicted)
Sequence
WKKELRDAYREAQQLVQRVPKMKNKPRS
Storage
Store at -20°C
InChI
InChI=1S/C153H256N50O41S/c1-78(2)70-105(195-136(230)102(51-56-118(212)213)188-127(221)91(33-15-20-59-155)181-126(220)90(32-14-19-58-154)180-124(218)88(159)73-85-76-176-89-31-13-12-30-87(85)89)140(234)184-95(38-25-64-173-151(166)167)131(225)198-109(75-119(214)215)139(233)178-83(10)123(217)194-107(72-84-43-45-86(205)46-44-84)141(235)185-94(37-24-63-172-150(164)165)129(223)187-101(50-55-117(210)211)125(219)177-82(9)122(216)179-98(47-52-113(160)206)133(227)186-99(48-53-114(161)207)135(229)196-106(71-79(3)4)143(237)200-120(80(5)6)146(240)192-100(49-54-115(162)208)134(228)183-97(40-27-66-175-153(170)171)138(232)201-121(81(7)8)148(242)203-68-29-42-112(203)145(239)190-93(35-17-22-61-157)128(222)189-103(57-69-245-11)137(231)182-92(34-16-21-60-156)130(224)197-108(74-116(163)209)142(236)193-104(36-18-23-62-158)147(241)202-67-28-41-111(202)144(238)191-96(39-26-65-174-152(168)169)132(226)199-110(77-204)149(243)244/h12-13,30-31,43-46,76,78-83,88,90-112,120-121,176,204-205H,14-29,32-42,47-75,77,154-159H2,1-11H3,(H2,160,206)(H2,161,207)(H2,162,208)(H2,163,209)(H,177,219)(H,178,233)(H,179,216)(H,180,218)(H,181,220)(H,182,231)(H,183,228)(H,184,234)(H,185,235)(H,186,227)(H,187,223)(H,188,221)(H,189,222)(H,190,239)(H,191,238)(H,192,240)(H,193,236)(H,194,217)(H,195,230)(H,196,229)(H,197,224)(H,198,225)(H,199,226)(H,200,237)(H,201,232)(H,210,211)(H,212,213)(H,214,215)(H,243,244)(H4,164,165,172)(H4,166,167,173)(H4,168,169,174)(H4,170,171,175)/t82-,83-,88-,90-,91-,92-,93-,94-,95-,96-,97-,98-,99-,100-,101-,102-,103-,104-,105-,106-,107-,108-,109-,110-,111-,112-,120-,121-/m0/s1
InChI Key
QYWJBYYWQATYFS-ICUWLHSYSA-N
Canonical SMILES
CC(C)CC(C(=O)NC(CCCNC(=N)N)C(=O)NC(CC(=O)O)C(=O)NC(C)C(=O)NC(CC1=CC=C(C=C1)O)C(=O)NC(CCCNC(=N)N)C(=O)NC(CCC(=O)O)C(=O)NC(C)C(=O)NC(CCC(=O)N)C(=O)NC(CCC(=O)N)C(=O)NC(CC(C)C)C(=O)NC(C(C)C)C(=O)NC(CCC(=O)N)C(=O)NC(CCCNC(=N)N)C(=O)NC(C(C)C)C(=O)N2CCCC2C(=O)NC(CCCCN)C(=O)NC(CCSC)C(=O)NC(CCCCN)C(=O)NC(CC(=O)N)C(=O)NC(CCCCN)C(=O)N3CCCC3C(=O)NC(CCCNC(=N)N)C(=O)NC(CO)C(=O)O)NC(=O)C(CCC(=O)O)NC(=O)C(CCCCN)NC(=O)C(CCCCN)NC(=O)C(CC4=CNC5=CC=CC=C54)N
1. Promiscuous G-Protein-Coupled Receptor Inhibition of Transient Receptor Potential Melastatin 3 Ion Channels by Gβγ Subunits
Stuart Bevan, Robson da Costa, David A Andersson, Clive Gentry, Talisia Quallo, Omar Alkhatib J Neurosci . 2019 Oct 2;39(40):7840-7852. doi: 10.1523/JNEUROSCI.0882-19.2019.
Transient receptor potential melastatin 3 (TRPM3) is a nonselective cation channel that is inhibited by Gβγ subunits liberated following activation of Gαi/oprotein-coupled receptors. Here, we demonstrate that TRPM3 channels are also inhibited by Gβγ released from Gαsand GαqActivation of the Gs-coupled adenosine 2B receptor and the Gq-coupled muscarinic acetylcholine M1 receptor inhibited the activity of TRPM3 heterologously expressed in HEK293 cells. This inhibition was prevented when the Gβγ sink βARK1-ct (C terminus of β-adrenergic receptor kinase-1) was coexpressed with TRPM3. In neurons isolated from mouse dorsal root ganglion (DRG), native TRPM3 channels were inhibited by activating Gs-coupled prostaglandin-EP2 and Gq-coupled bradykinin B2 (BK2) receptors. The Gi/oinhibitor pertussis toxin and inhibitors of PKA and PKC had no effect on EP2- and BK2-mediated inhibition of TRPM3, demonstrating that the receptors did not act through Gαi/oor through the major protein kinases activated downstream of G-protein-coupled receptor (GPCR) activation. When DRG neurons were dialyzed with GRK2i, which sequesters free Gβγ protein, TRPM3 inhibition by EP2 and BK2 was significantly reduced. Intraplantar injections of EP2 or BK2 agonists inhibited both the nocifensive response evoked by TRPM3 agonists, and the heat hypersensitivity produced by Freund's Complete Adjuvant (FCA). Furthermore, FCA-induced heat hypersensitivity was completely reversed by the selective TRPM3 antagonist ononetin in WT mice and did not develop inTrpm3-/-mice. Our results demonstrate that TRPM3 is subject to promiscuous inhibition by Gβγ protein in heterologous expression systems, primary neurons andin vivo, and suggest a critical role for this ion channel in inflammatory heat hypersensitivity.SIGNIFICANCE STATEMENTThe ion channel TRPM3 is widely expressed in the nervous system. Recent studies showed that Gαi/o-coupled GPCRs inhibit TRPM3 through a direct interaction between Gβγ subunits and TRPM3. Since Gβγ proteins can be liberated from other Gα subunits than Gαi/o, we examined whether activation of Gs- and Gq-coupled receptors also influence TRPM3 via Gβγ. Our results demonstrate that activation of Gs- and Gq-coupled GPCRs in recombinant cells and sensory neurons inhibits TRPM3 via Gβγ liberation. We also demonstrated that Gs- and Gq-coupled receptors inhibit TRPM3in vivo, thereby reducing pain produced by activation of TRPM3, and inflammatory heat hypersensitivity. Our results identify Gβγ inhibition of TRPM3 as an effector mechanism shared by the major Gα subunits.
2. G-protein βγ subunits are positive regulators of Kv7.4 and native vascular Kv7 channel activity
Vincenzo Barrese, Oleksandr V Povstyan, Jennifer B Stott, Georgina Carr, Iain A Greenwood Proc Natl Acad Sci U S A . 2015 May 19;112(20):6497-502. doi: 10.1073/pnas.1418605112.
Kv7.4 channels are a crucial determinant of arterial diameter both at rest and in response to endogenous vasodilators. However, nothing is known about the factors that ensure effective activity of these channels. We report that G-protein βγ subunits increase the amplitude and activation rate of whole-cell voltage-dependent K(+) currents sensitive to the Kv7 blocker linopirdine in HEK cells heterologously expressing Kv7.4, and in rat renal artery myocytes. In excised patch recordings, Gβγ subunits (2-250 ng /mL) enhanced the open probability of Kv7.4 channels without changing unitary conductance. Kv7 channel activity was also augmented by stimulation of G-protein-coupled receptors. Gallein, an inhibitor of Gβγ subunits, prevented these stimulatory effects. Moreover, gallein and two other structurally different Gβγ subunit inhibitors (GRK2i and a β-subunit antibody) abolished Kv7 channel currents in the absence of either Gβγ subunit enrichment or G-protein-coupled receptor stimulation. Proximity ligation assay revealed that Kv7.4 and Gβγ subunits colocalized in HEK cells and renal artery smooth muscle cells. Gallein disrupted this colocalization, contracted whole renal arteries to a similar degree as the Kv7 inhibitor linopirdine, and impaired isoproterenol-induced relaxations. Furthermore, mSIRK, which disassociates Gβγ subunits from α subunits without stimulating nucleotide exchange, relaxed precontracted arteries in a linopirdine-sensitive manner. These results reveal that Gβγ subunits are fundamental for Kv7.4 activation and crucial for vascular Kv7 channel activity, which has major consequences for the regulation of arterial tone.
3. Nerve growth factor induces neurite outgrowth of PC12 cells by promoting Gβγ-microtubule interaction
Manuel Miranda, Armando Varela-Ramirez, Nazarius S Lamango, Omar Najera, Arshad M Khan, Sukla Roychowdhury, Jorge A Sierra-Fonseca, Ellen M Walker, Jessica Martinez-Jurado BMC Neurosci . 2014 Dec 31;15:132. doi: 10.1186/s12868-014-0132-4.
Background:Assembly and disassembly of microtubules (MTs) is critical for neurite outgrowth and differentiation. Evidence suggests that nerve growth factor (NGF) induces neurite outgrowth from PC12 cells by activating the receptor tyrosine kinase, TrkA. G protein-coupled receptors (GPCRs) as well as heterotrimeric G proteins are also involved in regulating neurite outgrowth. However, the possible connection between these pathways and how they might ultimately converge to regulate the assembly and organization of MTs during neurite outgrowth is not well understood.Results:Here, we report that Gβγ, an important component of the GPCR pathway, is critical for NGF-induced neuronal differentiation of PC12 cells. We have found that NGF promoted the interaction of Gβγ with MTs and stimulated MT assembly. While Gβγ-sequestering peptide GRK2i inhibited neurite formation, disrupted MTs, and induced neurite damage, the Gβγ activator mSIRK stimulated neurite outgrowth, which indicates the involvement of Gβγ in this process. Because we have shown earlier that prenylation and subsequent methylation/demethylation of γ subunits are required for the Gβγ-MTs interaction in vitro, small-molecule inhibitors (L-28 and L-23) targeting prenylated methylated protein methyl esterase (PMPMEase) were tested in the current study. We found that these inhibitors disrupted Gβγ and ΜΤ organization and affected cellular morphology and neurite outgrowth. In further support of a role of Gβγ-MT interaction in neuronal differentiation, it was observed that overexpression of Gβγ in PC12 cells induced neurite outgrowth in the absence of added NGF. Moreover, overexpressed Gβγ exhibited a pattern of association with MTs similar to that observed in NGF-differentiated cells.Conclusions:Altogether, our results demonstrate that βγ subunit of heterotrimeric G proteins play a critical role in neurite outgrowth and differentiation by interacting with MTs and modulating MT rearrangement.
Online Inquiry
Verification code
Inquiry Basket