1.The use of new surface-modified poly(2-hydroxyethyl methacrylate) hydrogels in tissue engineering: treatment of the surface with fibronectin subunits versus Ac-CGGASIKVAVS-OH, cysteine, and 2-mercaptoethanol modification.
Kubinová Š1, Horák D, Vaněček V, Plichta Z, Proks V, Syková E. J Biomed Mater Res A. 2014 Jul;102(7):2315-23. doi: 10.1002/jbm.a.34910. Epub 2013 Aug 30.
Superporous poly(2-hydroxyethyl methacrylate) is successfully used as a scaffold material for tissue engineering; however, it lacks functional groups that support cell adhesion. The objective of this study was to investigate the cell-adhesive properties of biomimetic ligands, such as laminin-derived Ac-CGGASIKVAVS-OH (SIKVAV) peptide and fibronectin subunits (Fn), as well as small molecules exemplified by 2-mercaptoethanol (ME) and cysteine (Cys), immobilized on a copolymer of 2-hydroxyethyl methacrylate (HEMA) with 2-aminoethyl methacrylate (AEMA) by a maleimide-thiol coupling reaction. The maleimide group was introduced to the P(HEMA-AEMA) hydrogels by the reaction of their amino groups with N-γ-maleimidobutyryl-oxysuccinimide ester (GMBS). Mesenchymal stem cells (MSCs) were used to investigate the cell adhesive properties of the modified hydrogels. A significantly larger area of cell growth as well as a higher cell density were found on Fn- and SIKVAV-modified hydrogels when compared to the ME- and Cys-modified supports or neat P(HEMA-AEMA).