H-Met-Gly-Pro-AMC HCl
Need Assistance?
  • US & Canada:
    +
  • UK: +

H-Met-Gly-Pro-AMC HCl

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

H-Met-Gly-Pro-AMC HCl is a fluorogenic substrate for methionine aminopeptidases 1D and 2.

Category
Others
Catalog number
BAT-014457
CAS number
1926163-53-2
Molecular Formula
C22H28N4O5S.HCl
Molecular Weight
497.01
IUPAC Name
(2S)-1-[2-[[(2S)-2-amino-4-methylsulfanylbutanoyl]amino]acetyl]-N-(4-methyl-2-oxochromen-7-yl)pyrrolidine-2-carboxamide;hydrochloride
Synonyms
MGP-AMC HCl; L-Methionylglycyl-N-(4-methyl-2-oxo-2H-chromen-7-yl)-L-prolinamide hydrochloride (1:1); L-Prolinamide, L-methionylglycyl-N-(4-methyl-2-oxo-2H-1-benzopyran-7-yl)-, hydrochloride (1:1)
Related CAS
1926163-52-1 (free base)
Appearance
White Powder
Purity
≥95% by HPLC
Sequence
Met-Gly-Pro-AMC
Storage
Store at -20°C
Solubility
Soluble in Methanol
InChI
InChI=1S/C22H28N4O5S.ClH/c1-13-10-20(28)31-18-11-14(5-6-15(13)18)25-22(30)17-4-3-8-26(17)19(27)12-24-21(29)16(23)7-9-32-2;/h5-6,10-11,16-17H,3-4,7-9,12,23H2,1-2H3,(H,24,29)(H,25,30);1H/t16-,17-;/m0./s1
InChI Key
JAIQDHIAOHCZLY-QJHJCNPRSA-N
Canonical SMILES
CC1=CC(=O)OC2=C1C=CC(=C2)NC(=O)C3CCCN3C(=O)CNC(=O)C(CCSC)N.Cl
1. Standardized Hybrid Closed-Loop System Reporting
Viral N Shah, Satish K Garg Diabetes Technol Ther. 2021 May;23(5):323-331. doi: 10.1089/dia.2020.0622. Epub 2020 Nov 25.
The hybrid closed-loop (HCL) system has been shown to improve glycemic control and reduce hypoglycemia. Optimization of HCL settings requires interpretation of the glucose, insulin, and factors affecting glucose such as food intake and exercise. To the best of our knowledge, there is no published guidance on the standardized reporting of HCL systems. Standardization of HCL reporting would make interpretation of data easy across different systems. We reviewed the literature on patient and provider perspectives on downloading and reporting glucose metric preferences. We also incorporated international consensus on standardized reporting for glucose metrics. We describe a single-page HCL data reporting, referred to here as "artificial pancreas (AP) Dashboard." We propose seven components in the AP Dashboard that can provide detailed information and visualization of glucose, insulin, and HCL-specific metrics. The seven components include (A) glucose metrics, (B) hypoglycemia, (C) insulin, (D) user experience, (E) hyperglycemia, (F) glucose modal-day profile, and (G) insight. A single-page report similar to an electrocardiogram can help providers and patients interpret HCL data easily and take the necessary steps to improve glycemic outcomes. We also describe the optimal sampling duration for HCL data download and color coding for visualization ease. We believe that this is a first step in creating a standardized HCL reporting, which may result in better uptake of the systems. For increased adoption, standardized reporting will require input from providers, patients, diabetes device manufacturers, and regulators.
2. Superconcentrated hydrochloric acid
Kun Huang, et al. J Phys Chem B. 2011 Jun 23;115(24):7823-9. doi: 10.1021/jp109551z. Epub 2011 May 26.
We report the discovery of a potentially useful superconcentrated HCl at ambient temperature and pressure by using a simple surfactant-based reversed micelle system. Surprisingly, the molar ratios of H(+) to H(2)O (denoted as n(H+)/n(H2O)) in superconcentrated HCl can be larger than 5, while the maximum achievable n(H+)/n(H2O) value for conventional saturated HCl aqueous solution (37 wt %) is only about 0.28. Furthermore, both NMR and FT-IR results indicate that a significant amount of HCl remains in the molecular form rather than being ionized into H(+) and Cl(-). The superconcentrated HCl may promote some organic reactions that are not feasible by using conventional 37 wt % HCl solution. For example, addition reaction between C═C and HCl occurs in superconcentrated HCl solution without using catalysts.
Online Inquiry
Verification code
Inquiry Basket