H-THR-GLY-OH
Need Assistance?
  • US & Canada:
    +
  • UK: +

H-THR-GLY-OH

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Others
Catalog number
BAT-015473
CAS number
686-44-2
Molecular Formula
C6H12N2O4
Molecular Weight
176.17
H-THR-GLY-OH
IUPAC Name
2-[[(2S,3R)-2-amino-3-hydroxybutanoyl]amino]acetic acid
Synonyms
Thr-Gly; threonylglycine; Threonyl-glycine; TG dipeptide; L-Threoninyl-L-Glycine
Sequence
H-Thr-Gly-OH
Storage
Store at -20°C
InChI
InChI=1S/C6H12N2O4/c1-3(9)5(7)6(12)8-2-4(10)11/h3,5,9H,2,7H2,1H3,(H,8,12)(H,10,11)/t3-,5+/m1/s1
InChI Key
BIYXEUAFGLTAEM-WUJLRWPWSA-N
Canonical SMILES
CC(C(C(=O)NCC(=O)O)N)O
1. Formation Mechanism of Iodinated Aromatic Disinfection Byproducts: Acid Catalysis with H2OI
Yanpeng Gao, Junlang Qiu, Yuemeng Ji, Nicholas J P Wawryk, Taicheng An, Xing-Fang Li Environ Sci Technol. 2022 Feb 1;56(3):1791-1800. doi: 10.1021/acs.est.1c05484. Epub 2022 Jan 21.
Iodinated aromatic disinfection byproducts (I-DBPs) are a group of nonregulated but highly toxic DBPs. The formation of I-DBPs is attributed mainly to HOI because it is the most abundant reactive iodine species in chloraminated water. In this study, we used computational modeling of thermodynamics to examine the mechanism of iodination of aromatic contaminants, e.g., dipeptides and phenols. Computational prediction of the energy barriers of the formation of iodinated tyrosylglycine (I-Tyr-Gly) (66.9 kcal mol-1) and hydroxylated Tyr-Gly (OH-Tyr-Gly) (46.0 kcal mol-1) via iodination with HOI favors the formation of OH-Tyr-Gly over I-Tyr-Gly. Unexpectedly, mass spectrometry experiments detected I-Tyr-Gly but not OH-Tyr-Gly, suggesting that I-Tyr-Gly formation cannot be attributed to HOI alone. To clarify this result, we examined the thermodynamic role of the most reactive iodine species H2OI+ in the formation of aromatic I-DBPs under chloramination. Computational modeling of thermodynamic results shows that the formation of a loosely bonded complex of aromatic compounds with H2OI+ is the key step to initiate the iodination process. When H2OI+ serves as an acid catalyst and an iodinating agent, with HOI or H2O acting as a proton acceptor, the energy barrier of I-DBP formation was significantly lower (10.8-13.1 kcal mol-1). Therefore, even with its low concentration, H2OI+ can be involved in the formation of I-DBPs. These results provide insight into the mechanisms of aromatic I-DBP formation and important information for guiding research toward controlling I-DBPs in drinking water.
2. Affinity and translocation relationships via hPEPT1 of H-X aa-Ser-OH dipeptides: evaluation of H-Phe-Ser-OH as a pro-moiety for ibuprofen and benzoic acid prodrugs
Diana Højmark Omkvist, Dennis Jespersen Trangbæk, Jemma Mildon, James S Paine, Birger Brodin, Mikael Begtrup, Carsten Uhd Nielsen Eur J Pharm Biopharm. 2011 Feb;77(2):327-31. doi: 10.1016/j.ejpb.2010.12.009. Epub 2010 Dec 13.
The intestinal di/tri-peptide transporter 1 (hPEPT1) has been suggested as a drug delivery target for peptide-based prodrugs. The aim of the study was to synthesize a series of 11 serine-containing dipeptides (H-X(aa)-Ser-OH) and to investigate the relationship between binding to and transport via hPEPT1. An additional aim was to design a dipeptide which could serve as a pro-moiety for prodrugs targeted to hPEPT1. X(aa) was chosen from the 20 proteogenic amino acids. The dipeptides were synthesized using solid phase peptide synthesis. The K(i)-values of H-X(aa)-Ser-OH dipeptides for hPEPT1 in MDCK/hPEPT1 cells ranged from 0.14 mM (logIC(50)=-0.85 ± 0.06) for H-Tyr-Ser-OH to 0.89 mM (logIC(50)=-0.09 ± 0.02) for H-Gly-Ser-OH, as measured in a competition assay with [(14)C]Gly-Sar. The dipeptides were translocated via hPEPT1 with K(m)-values in the range of 0.20 (logIC(50)=-0.69 ± 0.04) for H-Met-Ser-OH to 1.04 (logIC(50)=0.02 ± 0.04) mM for H-Gly-Ser-OH. The relationship between ligand and transportate properties indicated that the initial binding of the ligand to hPEPT1 is the major determinant for translocation of the investigated dipeptides. H-Phe-Ser-OH was selected as a pro-moiety, and two prodrugs were synthesized, i.e. H-Phe-Ser(Ibuprofyl)-OH and H-Phe-Ser(Bz)-OH. Both H-Phe-Ser(Ibuprofyl)-OH and H-Phe-Ser(Bz)-OH had high affinity for hPEPT1 with K(i)-values of 0.07 mM (logIC(50)=-0.92 ± 0.12) and 0.12 mM (logIC(50)=-1.17 ± 0.40), respectively. However, none of the prodrugs were translocated via hPEPT1. This indicated that the coupling of the drug compounds to the peptide backbone did not decrease transporter binding, but abolished translocation, and that high affinity of prodrugs does not necessarily translate into favourable permeation properties.
3. Synthesis of stable and potent delta/mu opioid peptides: analogues of H-Tyr-c[D-Cys-Gly-Phe-D-Cys]-OH by ring-closing metathesis
Adriano Mollica, Giovanni Guardiani, Peg Davis, Shou-Wu Ma, Frank Porreca, Josephine Lai, Luisa Mannina, Anatoli P Sobolev, Victor J Hruby J Med Chem. 2007 Jun 28;50(13):3138-42. doi: 10.1021/jm061048b. Epub 2007 Jun 1.
Ring-closing metathesis has emerged as a powerful tool in organic synthesis for generating cyclic structures via C-C double bond formation. Recently, it has been successfully used in peptide chemistry for obtaining cyclic molecules bridged through an olefin unit in place of the usual disulfide bond. Here, we describe this approach for obtaining cyclic olefin bridged analogues of H-Tyr-c[D-Cys-Gly-Phe-Cys]-OH. The synthesis of the new ligands was performed using the second generation Grubbs' catalyst. The resulting cis-8 (cDADAE) and trans-9 (tDADAE) were fully characterized and tested at delta, mu, and kappa opioid receptors. Also the linear precursor 13 (lDADAE) and the hydrogenated derivative 11 (rDADAE) also were tested. All the cyclic products containing a olefinic bond are slightly selective but highly active and potent for the delta and mu opioid receptors. Activity toward the kappa opioid receptors was absent or very low.
Online Inquiry
Verification code
Inquiry Basket