Need Assistance?
  • US & Canada:
    +
  • UK: +

Hepcidin 3

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Hepcidin 3 was found in Epinephelus moara. It has antimicrobial activity.

Category
Functional Peptides
Catalog number
BAT-012371
Sequence
LEEAASNDTPVAAYQEMSMESRMMPDHVRQKRQSHLSMCRW
1. Regulation of the Iron Homeostatic Hormone Hepcidin
Veena Sangkhae, Elizabeta Nemeth Adv Nutr. 2017 Jan 17;8(1):126-136. doi: 10.3945/an.116.013961. Print 2017 Jan.
Iron is required for many biological processes but is also toxic in excess; thus, body iron balance is maintained through sophisticated regulatory mechanisms. The lack of a regulated iron excretory mechanism means that body iron balance is controlled at the level of absorption from the diet. Iron absorption is regulated by the hepatic peptide hormone hepcidin. Hepcidin also controls iron release from cells that recycle or store iron, thus regulating plasma iron concentrations. Hepcidin exerts its effects through its receptor, the cellular iron exporter ferroportin. Important regulators of hepcidin, and therefore of systemic iron homeostasis, include plasma iron concentrations, body iron stores, infection and inflammation, and erythropoiesis. Disturbances in the regulation of hepcidin contribute to the pathogenesis of many iron disorders: hepcidin deficiency causes iron overload in hereditary hemochromatosis and nontransfused β-thalassemia, whereas overproduction of hepcidin is associated with iron-restricted anemias seen in patients with chronic kidney disease, chronic inflammatory diseases, some cancers, and inherited iron-refractory iron deficiency anemia. This review summarizes our current understanding of the molecular mechanisms and signaling pathways involved in the control of hepcidin synthesis in the liver, a principal determinant of plasma hepcidin concentrations.
2. Oral iron supplements increase hepcidin and decrease iron absorption from daily or twice-daily doses in iron-depleted young women
Diego Moretti, et al. Blood. 2015 Oct 22;126(17):1981-9. doi: 10.1182/blood-2015-05-642223. Epub 2015 Aug 19.
Iron supplements acutely increase hepcidin, but the duration and magnitude of the increase, its dose dependence, and its effects on subsequent iron absorption have not been characterized in humans. Better understanding of these phenomena might improve oral iron dosing schedules. We investigated whether the acute iron-induced increase in hepcidin influences iron absorption of successive daily iron doses and twice-daily iron doses. We recruited 54 nonanemic young women with plasma ferritin ≤20 µg/L and conducted: (1) a dose-finding investigation with 40-, 60-, 80-, 160-, and 240-mg labeled Fe as [(57)Fe]-, [(58)Fe]-, or [(54)Fe]-FeSO4 given at 8:00 am fasting on 1 or on 2 consecutive days (study 1, n = 25; study 2, n = 16); and (2) a study giving three 60-mg Fe doses (twice-daily dosing) within 24 hours (study 3, n = 13). In studies 1 and 2, 24 hours after doses ≥60 mg, serum hepcidin was increased (P < .01) and fractional iron absorption was decreased by 35% to 45% (P < .01). With increasing dose, fractional absorption decreased (P < .001), whereas absolute absorption increased (P < .001). A sixfold increase in iron dose (40-240 mg) resulted in only a threefold increase in iron absorbed (6.7-18.1 mg). In study 3, total iron absorbed from 3 doses (2 mornings and an afternoon) was not significantly greater than that from 2 morning doses. Providing lower dosages (40-80 mg Fe) and avoiding twice-daily dosing maximize fractional absorption. The duration of the hepcidin response supports alternate day supplementation, but longer-term effects of these schedules require further investigation. These clinical trials were registered at www.ClinicalTrials.gov as #NCT01785407 and #NCT02050932.
3. A Red Carpet for Iron Metabolism
Martina U Muckenthaler, Stefano Rivella, Matthias W Hentze, Bruno Galy Cell. 2017 Jan 26;168(3):344-361. doi: 10.1016/j.cell.2016.12.034.
200 billion red blood cells (RBCs) are produced every day, requiring more than 2 × 1015 iron atoms every second to maintain adequate erythropoiesis. These numbers translate into 20 mL of blood being produced each day, containing 6 g of hemoglobin and 20 mg of iron. These impressive numbers illustrate why the making and breaking of RBCs is at the heart of iron physiology, providing an ideal context to discuss recent progress in understanding the systemic and cellular mechanisms that underlie the regulation of iron homeostasis and its disorders.
Online Inquiry
Verification code
Inquiry Basket