1. Impact of Tilapia hepcidin 2-3 dietary supplementation on the gut microbiota profile and immunomodulation in the grouper (Epinephelus lanceolatus)
Chen-Hung Ting, Chieh-Yu Pan, Yi-Chun Chen, Yu-Chun Lin, Tzong-Yueh Chen, Venugopal Rajanbabu, Jyh-Yih Chen Sci Rep. 2019 Dec 13;9(1):19047. doi: 10.1038/s41598-019-55509-9.
Hepcidin regulates iron homeostasis and host-defense mechanisms, while the hepcidin-like protein, Tilapia hepcidin (TH)2-3, functions as an antimicrobial peptide (AMP). Since AMP dietary supplements may be used as alternatives to antibiotics in livestock, we tested the effects of recombinant (r)TH2-3 as a dietary supplement in grouper aquaculture. rTH2-3 was produced by a Pichia pastoris expression system and exhibited thermostability and broad-spectrum antimicrobial activity. The feed conversion ratio and feed efficiency were determined in Epinephelus lanceolatus (grouper) fed with rTH2-3-supplemented diet for 28 days. In addition, grouper showed enhanced superoxide dismutase (SOD) activity after rTH2-3 feeding compared to regular-diet-fed fish. Gut microbiota analysis revealed that microbial diversity was enhanced by feeding grouper with 1% rTH2-3. After challenging grouper with Vibrio alginolyticus, differential regulation of immune-related genes in the liver and spleen was observed between the TH2-3 and regular-diet groups, including for genes associated with antimicrobial and pro-inflammatory functions, complement components, and major histocompatibility complex (Mhc). These findings suggest that overall immunity was improved. Thus, our results suggest long-term supplementation with rTH2-3 may be beneficial for aquacultured grouper. The beneficial effects of the supplement are likely based on changes in the commensal microbial community as well as immunomodulation.
2. Tilapia hepcidin 2-3 peptide modulates lipopolysaccharide-induced cytokines and inhibits tumor necrosis factor-alpha through cyclooxygenase-2 and phosphodiesterase 4D
Venugopal Rajanbabu, Chieh-Yu Pan, Shang-Chun Lee, Wei-Ju Lin, Ching-Chun Lin, Chung-Leung Li, Jyh-Yih Chen J Biol Chem. 2010 Oct 1;285(40):30577-86. doi: 10.1074/jbc.M110.137935. Epub 2010 Jul 30.
The antimicrobial peptide, tilapia hepcidin (TH) 2-3, belongs to the hepcidin family, and its antibacterial function has been reported. Here, we examined the TH2-3-mediated regulation of proinflammatory cytokines in bacterial endotoxin lipopolysaccharide (LPS)-stimulated mouse macrophages. The presence of TH2-3 in LPS-stimulated cells reduced the amount of tumor necrosis factor (TNF)-α secretion. From a microarray, real-time polymerase chain reaction (PCR), and cytokine array studies, we showed down-regulation of the proinflammatory cytokines TNF-α, interleukin (IL)-1α, IL-1β, IL-6, and the prostaglandin synthesis gene, cyclooxygenase (COX)-2, by TH2-3. Studies with the COX-2-specific inhibitor, melaxicam, and with COX-2-overexpressing cells demonstrated the positive regulation of TNF-α and negative regulation of cAMP degradation-specific phosphodiesterase (PDE) 4D by COX-2. In LPS-stimulated cells, TH2-3 acts like melaxicam and down-regulates COX-2 and up-regulates PDE4D. The reduction in intracellular cAMP by TH2-3 or melaxicam in LPS-stimulated cells supports the negative regulation of PDE4D by COX-2 and TH2-3. This demonstrates that the inhibition of COX-2 is among the mechanisms through which TH2-3 controls TNF-α release. At 1 h after treatment, the presence of TH2-3 in LPS-stimulated cells had suppressed the induction of pERK1/2 and prevented the LPS-stimulated nuclear accumulation of NF-κB family proteins of p65, NF-κB2, and c-Rel. In conclusion, TH2-3 inhibits TNF-α and other proinflammatory cytokines through COX-2-, PDE4D-, and pERK1/2-dependent mechanisms.
3. A fish antimicrobial peptide, tilapia hepcidin TH2-3, shows potent antitumor activity against human fibrosarcoma cells
Jyh-Yih Chen, Wei-Ju Lin, Tai-Lang Lin Peptides. 2009 Sep;30(9):1636-42. doi: 10.1016/j.peptides.2009.06.009. Epub 2009 Jun 16.
As part of a continuing search for potential anticancer drug candidates from antimicrobial peptides of marine organisms, tilapia (Oreochromis mossambicus) hepcidin TH2-3 was evaluated in several tumor cell lines. The results indicated that TH2-3, a synthetic 20-mer antimicrobial peptide, specifically inhibited human fibrosarcoma cell (HT1080 cell line) proliferation and migration. The way in which TH2-3 inhibited HT1080 cell growth was then studied. TH2-3 inhibited HT1080 cell growth in a concentration-dependent manner according to an MTT analysis, which was confirmed by a soft-agar assay and AO/EtBr staining. Scanning electron microscopy revealed that TH2-3 caused lethal membrane disruption in HT1080 cancer cells, and a wound healing assay supported that TH2-3 decreased the migration of HT1080 cells. In addition, c-Jun mRNA expression was downregulated after treatment with TH2-3 for 48-96 h compared to the untreated group. These findings suggest a mechanism of cytotoxic action of TH2-3 and indicate that TH2-3 may be a promising chemotherapeutic agent against human fibrosarcoma cells.