1. High-yield RNA-extraction method for saliva
Pratibala Pandit, Justin Cooper-White, Chamindie Punyadeera Clin Chem. 2013 Jul;59(7):1118-22. doi: 10.1373/clinchem.2012.197863. Epub 2013 Apr 5.
Background: The use of salivary diagnostics is increasing because of its noninvasiveness, ease of sampling, and the relatively low risk of contracting infectious organisms. Saliva has been used as a biological fluid to identify and validate RNA targets in head and neck cancer patients. The goal of this study was to develop a robust, easy, and cost-effective method for isolating high yields of total RNA from saliva for downstream expression studies. Methods: Oral whole saliva (200 μL) was collected from healthy controls (n = 6) and from patients with head and neck cancer (n = 8). The method developed in-house used QIAzol lysis reagent (Qiagen) to extract RNA from saliva (both cell-free supernatants and cell pellets), followed by isopropyl alcohol precipitation, cDNA synthesis, and real-time PCR analyses for the genes encoding β-actin ("housekeeping" gene) and histatin (a salivary gland-specific gene). Results: The in-house QIAzol lysis reagent produced a high yield of total RNA (0.89-7.1 μg) from saliva (cell-free saliva and cell pellet) after DNase treatment. The ratio of the absorbance measured at 260 nm to that at 280 nm ranged from 1.6 to 1.9. The commercial kit produced a 10-fold lower RNA yield. Using our method with the QIAzol lysis reagent, we were also able to isolate RNA from archived saliva samples that had been stored without RNase inhibitors at -80 °C for >2 years. Conclusions: Our in-house QIAzol method is robust, is simple, provides RNA at high yields, and can be implemented to allow saliva transcriptomic studies to be translated into a clinical setting.
2. The efficacy of salivary Histatin-1 protein in wound closure of nicotine treated human periodontal ligament fibroblast cells - In vitro study
Amal Arab, K G Aghila Rani, Roa T Altell, Asmaa A Ismail, Sausan Alkawas, A R Samsudin Arch Oral Biol. 2022 Sep;141:105486. doi: 10.1016/j.archoralbio.2022.105486. Epub 2022 Jun 17.
Objectives: The aims of this study were to investigate the efficacy of Histatin-1 in wound closure as well as effects on gene expression of nicotine-treated human Periodontal Ligament Fibroblast cells (HPDL) in vitro. Design: HPDL grown in 2.5% culture medium treated with 10 ng/ml Histatin - 1 in the presence/absence of 0.5 µM nicotine were subjected to wound assay and migration was studied at 0 h, 6 h, 12 h and 24 h. Cells grown in 2.5% medium served as control. Cell migration was studied by wound gap and transwell migration assays. The effect of Histatin-1 on expression of matrix metalloproteinase 8 (MMP-8), insulin-like growth factor 1 (IGF-1), transforming growth factor beta (TGF-β), collagen type I (COL1) and plasminogen activator inhibitor 1 (PAI-1) were studied. Results: Histatin-1 treatment significantly decreased percentage wound gap at 12 h (62.96 ± 3.22 vs 79.23 ± 1.73; p < 0.05) and at 24 h (38.78 ± 7.59 vs 75.21 ± 4.94; p < 0.001) compared with controls. In nicotine+Histatin-1 treated cells, wound gap decreased to 70.2 ± 2.9% (p < 0.01) at 24 h compared to nicotine alone in which 82 ± 1.64% of wound gap was retained. Transwell migration assays showed significant migration of HPDL with Histatin-1 (p < 0.05). Gene expression demonstrated significant upregulation for IGF-1, TGF β, COL1 and PAI-1 with Histatin-1. Conclusion: Histatin-1 significantly mitigated the effect of nicotine in wound healing assay involving HPDL fibroblast cells at 24 h. Histatin-1 aided wound closure is attributed to the upregulation of IGF-1, TGF β, COL1, and PAI-1 genes.
3. Histatin peptides: Pharmacological functions and their applications in dentistry
Zohaib Khurshid, Shariq Najeeb, Maria Mali, Syed Faraz Moin, Syed Qasim Raza, Sana Zohaib, Farshid Sefat, Muhammad Sohail Zafar Saudi Pharm J. 2017 Jan;25(1):25-31. doi: 10.1016/j.jsps.2016.04.027. Epub 2016 May 4.
There are many human oral antimicrobial peptides responsible for playing important roles including maintenance, repairing of oral tissues (hard or soft) and defense against oral microbes. In this review we have highlighted the biochemistry, physiology and proteomics of human oral histatin peptides, secreted from parotid and submandibular salivary glands in human. The significance of these peptides includes capability for ionic binding that can kill fungal Candida albicans. They have histidine rich amino acid sequences (7-12 family members; corresponding to residues 12-24, 13-24, 12-25, 13-25, 5-11, and 5-12, respectively) for Histatin-3. However, Histatin-3 can be synthesized proteolytically from histatin 5 or 6. Due to their fungicidal response and high biocompatibility (little or no toxicity), these peptides can be considered as therapeutic agents with most probable applications for example, artificial saliva for denture wearers and salivary gland dysfunction conditions. The objectives of current article are to explore the human histatin peptides for its types, chemical and biological aspects. In addition, the potential for therapeutic bio-dental applications has been elaborated.