Humanin
Need Assistance?
  • US & Canada:
    +
  • UK: +

Humanin

* Please kindly note that our products are not to be used for therapeutic purposes and cannot be sold to patients.

Category
Others
Catalog number
BAT-010190
CAS number
330936-69-1
Molecular Formula
C119H204N34O32S2
Molecular Weight
2687.22
Humanin
IUPAC Name
(4S)-5-[[(2S,3S)-1-[[(2S)-1-[[(2S)-1-[(2S)-2-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-5-carbamimidamido-1-[[(2S)-5-carbamimidamido-1-[[(1S)-1-carboxyethyl]amino]-1-oxopentan-2-yl]amino]-1-oxopentan-2-yl]amino]-1-oxohexan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]carbamoyl]pyrrolidin-1-yl]-4-methyl-1-oxopentan-2-yl]amino]-3-carboxy-1-oxopropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-4-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S)-2-amino-4-methylsulfanylbutanoyl]amino]propanoyl]pyrrolidine-2-carbonyl]amino]-5-carbamimidamidopentanoyl]amino]acetyl]amino]-3-phenylpropanoyl]amino]-3-hydroxypropanoyl]amino]-3-sulfanylpropanoyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]-3-hydroxybutanoyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoic acid
Synonyms
Protein Humanin (human)
Appearance
White to Off-white Powder
Purity
≥95%
Sequence
MAPRGFSCLLLLTSEIDLPVKRRA
Storage
Store at -20°C
Solubility
Soluble in acetic acid
InChI
InChI=1S/C119H204N34O32S2/c1-19-65(14)92(112(180)144-81(54-90(160)161)104(172)145-82(52-63(10)11)115(183)153-46-29-37-87(153)110(178)149-91(64(12)13)111(179)139-72(32-23-24-41-120)97(165)136-74(35-27-44-130-119(126)127)98(166)135-73(34-26-43-129-118(124)125)96(164)133-67(16)116(184)185)150-99(167)75(38-39-89(158)159)137-106(174)84(57-155)147-113(181)93(68(17)156)151-105(173)79(51-62(8)9)142-101(169)77(49-60(4)5)140-100(168)76(48-59(2)3)141-102(170)78(50-61(6)7)143-108(176)85(58-186)148-107(175)83(56-154)146-103(171)80(53-69-30-21-20-22-31-69)134-88(157)55-131-95(163)71(33-25-42-128-117(122)123)138-109(177)86-36-28-45-152(86)114(182)66(15)132-94(162)70(121)40-47-187-18/h20-22,30-31,59-68,70-87,91-93,154-156,186H,19,23-29,32-58,120-121H2,1-18H3,(H,131,163)(H,132,162)(H,133,164)(H,134,157)(H,135,166)(H,136,165)(H,137,174)(H,138,177)(H,139,179)(H,140,168)(H,141,170)(H,142,169)(H,143,176)(H,144,180)(H,145,172)(H,146,171)(H,147,181)(H,148,175)(H,149,178)(H,150,167)(H,151,173)(H,158,159)(H,160,161)(H,184,185)(H4,122,123,128)(H4,124,125,129)(H4,126,127,130)/t65-,66-,67-,68+,70-,71-,72-,73-,74-,75-,76-,77-,78-,79-,80-,81-,82-,83-,84-,85-,86-,87-,91-,92-,93-/m0/s1
InChI Key
DPEUWKZJZIPZKE-OFANTOPUSA-N
Canonical SMILES
CCC(C)C(C(=O)NC(CC(=O)O)C(=O)NC(CC(C)C)C(=O)N1CCCC1C(=O)NC(C(C)C)C(=O)NC(CCCCN)C(=O)NC(CCCNC(=N)N)C(=O)NC(CCCNC(=N)N)C(=O)NC(C)C(=O)O)NC(=O)C(CCC(=O)O)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C(CC(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC(C)C)NC(=O)C(CS)NC(=O)C(CO)NC(=O)C(CC2=CC=CC=C2)NC(=O)CNC(=O)C(CCCNC(=N)N)NC(=O)C3CCCN3C(=O)C(C)NC(=O)C(CCSC)N
1. Humanin: A mitochondrial-derived peptide in the treatment of apoptosis-related diseases
Abu Hazafa, et al. Life Sci. 2021 Jan 1;264:118679. doi: 10.1016/j.lfs.2020.118679. Epub 2020 Oct 29.
Humanin (HN) is a small mitochondrial-derived cytoprotective polypeptide encoded by mtDNA. HN exhibits protective effects in several cell types, including leukocytes, germ cells, neurons, tissues against cellular stress conditions and apoptosis through regulating various signaling mechanisms, such as JAK/STAT pathway and interaction of BCL-2 family of protein. HN is an essential cytoprotective peptide in the human body that regulates mitochondrial functions under stress conditions. The present review aims to evaluate HN peptide's antiapoptotic activities as a potential therapeutic target in the treatment of cancer, diabetes mellitus, male infertility, bone-related diseases, cardiac diseases, and brain diseases. Based on in vitro and in vivo studies, HN significantly suppressed the apoptosis during the treatment of bone osteoporosis, cardiovascular diseases, diabetes mellitus, and neurodegenerative diseases. According to accumulated data, it is concluded that HN exerts the proapoptotic activity of TNF-α in cancer, which makes HN as a novel therapeutic agent in the treatment of cancer and suggested that along with HN, the development of another mitochondrial-derived peptide could be a viable therapeutic option against different oxidative stress and apoptosis-related diseases.
2. The role of humanin in the regulation of reproduction
Hui Lei, Meng Rao Biochim Biophys Acta Gen Subj. 2022 Jan;1866(1):130023. doi: 10.1016/j.bbagen.2021.130023. Epub 2021 Oct 7.
Humanin, a mitochondria-derived peptide, has been found to exert variously protective function in many tissues, especially in the nervous tissues. However, relatively limited studies have focused on the role of humanin in the regulation of reproduction. Current observations indicate that humanin plays an important role in regulating the response of the cell to oxidative stress and apoptosis in ovaries and testes via the modulation of several signaling pathways, especially when the body is in an abnormal state. Even so, the detailed mechanism of humanin function needs to be explored urgently. In this passage, we demonstrate how humanin exerts its protective role in female and male reproduction and raise several questions that need further investigations. Given humanin's new frontier for the design of novel therapeutic approaches for male infertility, male contraception, female infertility, and glucose metabolism in polycystic ovary syndrome, it is worthy of further study on its protective effects and clinical applications in reproductive function.
3. Protective Mechanism of Humanin Against Oxidative Stress in Aging-Related Cardiovascular Diseases
He Cai, Yunxia Liu, Hongbo Men, Yang Zheng Front Endocrinol (Lausanne). 2021 Jun 10;12:683151. doi: 10.3389/fendo.2021.683151. eCollection 2021.
Physiological reactive oxygen species (ROS) are important regulators of intercellular signal transduction. Oxidative and antioxidation systems maintain a dynamic balance under physiological conditions. Increases in ROS levels destroy the dynamic balance, leading to oxidative stress damage. Oxidative stress is involved in the pathogenesis of aging-related cardiovascular diseases (ACVD), such as atherosclerosis, myocardial infarction, and heart failure, by contributing to apoptosis, hypertrophy, and fibrosis. Oxidative phosphorylation in mitochondria is the main source of ROS. Increasing evidence demonstrates the relationship between ACVD and humanin (HN), an endogenous peptide encoded by mitochondrial DNA. HN protects cardiomyocytes, endothelial cells, and fibroblasts from oxidative stress, highlighting its protective role in atherosclerosis, ischemia-reperfusion injury, and heart failure. Herein, we reviewed the signaling pathways associated with the HN effects on redox signals, including Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2), chaperone-mediated autophagy (CMA), c-jun NH2 terminal kinase (JNK)/p38 mitogen-activated protein kinase (p38 MAPK), adenosine monophosphate-activated protein kinase (AMPK), and phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)-Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3). Furthermore, we discussed the relationship among HN, redox signaling pathways, and ACVD. Finally, we propose that HN may be a candidate drug for ACVD.
Online Inquiry
Verification code
Inquiry Basket